

Homomorphic embeddings in *n*-groups

Mona Cristescu

"Petru Maior" University of Tg. Mureş, Romania e-mail: mcristescu@science.upm.ro

ABSTRACT

We prove that an cancellative n-groupoid \mathcal{A} can be homotopic embedded in an n-group if and only if in \mathcal{A} are satisfied all n-ary Malcev conditions. Now we shall prove that in the presence of associative law we obtain homomorphic embeddings. Furthermore, if \mathcal{A} has a lateral identity a such embeddings is assured by a subset of n-ary Malcev conditions - unary Malcev conditions.

Keywords: cancellation law, covering semigroup, homotopic embedding, n-ary Malcev conditions, n-groupoid, unary Malcev conditions.

We prove that an cancellative n-groupoid A can be homotopic embedded in an n-group if and only if in Aare satisfied all n-ary Malcev conditions.

Now we shall prove that in the presence of associative law we obtain homomorphic embeddings. Furthermore, if A has a lateral identity a such embeddings is assured by a subset of n-ary Malcev conditions unary Malcev conditions.

For an abbreviation we shall use the following notations(see [1]):

$$(x_1, x_2, \ldots, x_n) = x_1^n,$$

respectively x^n if

$$x_1 = x_2 = \dots = x_n = x.$$

Let $\mathcal{A} = (A, \alpha)$ be an n-groupoid (i.e $\alpha : A^n \to A$). If α satisfies the associative law

$$\alpha(\alpha(x_1^n), x_{n+1}^{2n-1}) = \alpha(x_1^i, \alpha(x_{i+1}^{n+i}), x_{n+i+1}^{2n-1})$$

for i = 1, 2, ..., n - 1 and for all $x_1, ..., x_{2n-1}$ in A then \mathcal{A} is an **n-semigroup**.

The sequence a_1^{n-1} is an lateral identity in the ngroupoid \mathcal{A} if

$$\alpha(a_1^{n-1}, x) = \alpha(x, a_1^{n-1}) = x$$

for all x in A.

The following laws, wich may of may not hold in a given n-groupoid A, are known as **left** and **right** cancellation laws, respectively,

$$\alpha(u_1^{n-1},x)=\alpha(u_1^{n-1},y)\Rightarrow x=y$$

$$\alpha(x, u_1^{n-1}) = \alpha(y, u_1^{n-1}) \Rightarrow x = y$$

An n-groupoid \mathcal{A} is a **cancellation n-groupoid** if

$$\alpha(u_1^{i-1},x,u_{i+1}^n)=\alpha(u_1^{i-1},y,u_{i+1}^n)\Rightarrow x=y$$

for $i = 1, 2, \ldots, n - 1$.

In [5] was proved that an n-semigroup wich is left and right cancellative is a cancellation *n*-semigroup.

An important concept in the theory of *n*-semigroups is that of a covering semigroup.

Definition 1. (see [5]) A binary $\overline{A} = (\overline{A}, \cdot)$ semigroup is said to be a covering semigroup of an *n*semigroup $A = (A, \alpha)$ provided \overline{A} has the following properties:

- the set A is a generating subset of $\overline{\mathcal{A}}$;
- $\alpha(a_1^n) = a_1 \cdot a_2 \dots a_n$ for all $a_1, \dots, a_n \in A$.

Generalizing an result from [5] we have

Theorem 1. Every cancellation *n*-semigroup has a cancellation covering semigroup.

Outline of proof. Let $\mathcal{A} = (A, \alpha)$ be an cancellation *n*-semigroup. Denote by $\mathcal{S}' = (S', \cdot)$ the free semigroup with identity generated by the set A. Let us consider the binary relation $\pi \subseteq S'^2$ defined by: $s\pi s'$ iff

- 1. there exist $s_1, s_2, s_3 \in S'$ such that $\lambda(s_2) = n$ (where $\lambda(s_2)$ is the lenght of s_2), $s = s_1s_2s_3$ and $s' = s_1\alpha(s_2)s_3$, or
- 2. $\lambda(s) = \lambda(s') < n$ and there is a $s'' \in S'$ with $\lambda(s'') = n \lambda(s)$ such that $\alpha(ss') = \alpha(ss'')$, or

3. s = 1 (the identity of S'), $\lambda(s') = n - 1$ and $\alpha(s', a) = a$ for some $a \in A$.

Denote by ρ the equivalence on S' generated by π . Then ρ is a congruence on S' and S'/ρ is a cancellation covering semigroup of A.

It is easy to prove the following

Lemma 1. Let be \overline{A} a covering semigroup of the *n*-semigroup A. If \overline{A} can be homomorphic embedded in a group then A can be homomorphic embedded in a *n*-group.

Theorem 2. A cancellation *n*-semigroup $\mathcal{A} = (A, \alpha)$ without lateral identities can be homorphical embedded in a *n*-group iff in \mathcal{A} are satisfied all *n*-ary Malcev conditions.

Proof. Suppose that \mathcal{A} can be homomorphical embedded in an *n*-group \mathcal{G} . All *n*-ary Malcev conditions are satisfied in \mathcal{G} . Consequently, these conditions are satisfied in \mathcal{A} .

Conversely, assume that all *n*-ary Malcev conditions are satisfied in \mathcal{A} . By Lemma 1 it is sufficient to prove that the covering semigroup $\mathcal{S}'(\mathcal{A})/\rho$ is homomorphic embeddable in a binary group. \mathcal{A} being without lateral identities, [1] is a prime unit in $\mathcal{S}'(\mathcal{A})/\rho$. Therefore it is sufficient to prove that the semigroup $\mathcal{S}(\mathcal{A})/\rho = (\mathcal{S}'(\mathcal{A})/\rho - \{[1]\}, \cdot)$ is embeddable in a group. There exists such an embedding iff in $\mathcal{S}(\mathcal{A})/\rho$ are satisfied all binary Malcev conditions(see [3]). Since $\{[a] \mid a \in A\}$ is a generating set of $\mathcal{S}(\mathcal{A})/\rho$ it is sufficient (see [3]) to consider only Malcev conditions according the table

Let I be a Malcev sequence and $\sigma(I)$ the corresponding system of equalities. Adjoining the closing equality to $\sigma(I)$ we obtain the system $\tilde{\sigma}(I)$. To each equality of $\tilde{\sigma}(I)$ we assign a tag - the corresponding pair of symbols of I.

Example. Let $I = R_1 L_1 R_2 L_2 R_3 \overline{L}_2 \overline{R}_3 \overline{R}_2 \overline{L}_1 \overline{R}_1$. The tagged system $\tilde{\sigma}(I)$ is

$$\begin{split} &(R_1L_1)\;[w_1][\bar{a}_1]=[u_1][s_1]\\ &(L_1R_2)\;[a_1][s_1]=[w_2][t_2]\\ &(R_2L_2)\;[w_2][\bar{a}_2]=[u_2][s_2]\\ &(L_2R_3)\;[a_2][s_2]=[w_3][t_3]\\ &(R_3\overline{L}_2)\;[w_3][\bar{a}_3]=[a_2][\bar{s}_2]\\ &(\overline{L}_2,\overline{R}_3)\;[u_2][\bar{s}_2]=[\bar{w}_3][\bar{a}_3]\\ &(\overline{R}_3,\overline{R}_2)\;[\bar{w}_3][t_3]=[\bar{w}_2][\bar{a}_2]\\ &(\overline{R}_2,\overline{L}_1)\;[\bar{w}_2][t_2]=[a_1][\bar{s}_1]\\ &(\overline{L}_1,\overline{R}_1)\;[u_1][\bar{s}_1]=[\bar{w}_1][\bar{a}_1]\\ &(\overline{R}_1,R_1)\;[\bar{w}_1][t_1]=[w_1][t_1] \;(\text{the closing equality}) \end{split}$$

From the definition of the congruence relation ρ it follows:

- if [x] = [y] then $\lambda(x) \equiv \lambda(y) \pmod{n-1}$, where $\lambda(x)$ is the length of x;
- in each class [x] there is an element x' with $\lambda(x') \leq n-1$.

Consequently, we can suppose that in the table 1 each representative has the length $\leq n - 1$.

Now we construct a new system of equalities $\tilde{\sigma}$ in wich member has the length $\equiv 1 \pmod{n-1}$. Let *a* be an element of *A*.

1. If L_1 is the first symbol of I,

$$(L_1-) [a_1][s_1] = [x][y]$$

we choose $0 \le j_1 \le n-1$ such that $\lambda(s_1) + j_1 \equiv 0$.

2. If R_1 is the first symbol of I,

$$(R_1-) [w_1][\overline{a_1}] = [x][y]$$

we choose $0 \le i_1 \le n-1$ such that $i_1 + \lambda(w_1) \equiv 0$.

We obtain the first equality of $\tilde{\sigma}(I)$ by multiplying the first equality of $\bar{\sigma}(I)$ on the right by a^{j_1} in the first case and on the left by a^{i_1} in the second case.

We obtain the second equality of $\tilde{\sigma}(I)$ from the second equality of $\overline{\sigma}(I)$ in the following way: if the first (second) factor of the left member of the second equality of $\overline{\sigma}(I)$ is equal to the first (second) factor of the right member in the first equality of $\overline{\sigma}(I)$ then we multiply the second equality of $\overline{\sigma}(I)$ by the left by a^{i_1} and by the right by a^{j_2} (respectively, by the left by a^{i_2} and by the right by a^{j_1}) where $0 \le i_2, j_2 \le n-1$ are such that the length of the left member of new equality be $\equiv 1$.

In the same manner we obtain the <u>k</u>th equality of $\overline{\sigma}(I)$ from the <u>k</u>th equality of $\overline{\sigma}(I)$.

Example. We apply this procedure to the system $\overline{\sigma}(I)$ considered in the previous example.

 $\begin{array}{l} \text{Suppose } n \ = \ 5, \lambda(u_1) \ = \ 2, \lambda(s_1) \ = \ 3, \lambda(\bar{s}_1) \ = \ 3, \lambda(u_2) \ = \ 2, \lambda(s_2) \ = \ 1, \lambda(\bar{s}_2) \ = \ 1, \lambda(w_1) \ = \ 4, \lambda(\bar{w}_1) \ = \ 4, \lambda(t_1) \ = \ 2, \lambda(w_2) \ = \ 2, \lambda(\bar{w}_2) \ = \ 2, \lambda(w_3) \ = \ 1, \lambda(\bar{w}_3) \ = \ 2, \lambda(t_3) \ = \ 1. \end{array}$ The tagged system $\widetilde{\sigma}(I)$ is

$$\begin{array}{l} (R_{1}L_{1}) \ w_{1}\bar{a}_{1} \equiv u_{1}s_{1} \\ (L_{1}R_{2}) \ aa_{1}s_{1} \equiv aw_{2}t_{2} \\ (R_{2}L_{2}) \ aw_{2}\bar{a}_{2}a \equiv au_{2}s_{2}a \\ (L_{2}R_{3}) \ a^{2}a_{2}s_{2}a \equiv a^{2}w_{3}t_{3}a \\ (R_{3}\overline{L}_{2}) \ a^{2}w_{3}\bar{a}_{3}a \equiv a^{2}a_{2}\bar{s}_{2}a \\ (\overline{L}_{2}\overline{R}_{3}) \ au_{2}\bar{s}_{2}a \equiv aw_{3}a_{3}a \\ (\overline{R}_{3}\overline{R}_{2}) \ aw_{3}t_{3}a \equiv a\bar{w}_{2}\bar{a}_{2}a \\ (\overline{R}_{2}\overline{L}_{1}) \ a\bar{w}_{2}t_{2} \equiv aa_{1}\bar{s}_{1} \\ (\overline{L}_{1}\overline{R}_{1}) \ u_{1}\bar{s}_{1} \equiv \bar{w}_{1}\bar{a}_{1} \\ (\overline{R}_{1}R_{1}) \ \bar{w}_{1}t_{1}a^{3} \equiv w_{1}t_{1}a^{3} \end{array}$$

Now we prove that $\tilde{\sigma}(I)$ is a system of equalities corresponding to same Malcev sequence *I*. Hence, we must show that the equalities of $\tilde{\sigma}(I)$ are obtained according the table

Let be L_q any symbol of I. We use an inductive argument on $n(L_q)$ = the number of L symbols between L_q and \overline{L}_q . Suppose $n(L_q) = 0$. Then q = 1. We have two cases.

Case 1. L_1 is the first symbol of I. Then

$$(L_{1}-) a_{1}s_{1}a^{j_{1}} \equiv x_{1}y_{1}a^{j_{1}}$$

$$(-\overline{L}_{1}) x_{2}y_{2}a^{j_{2}} \equiv a_{1}\overline{s}_{1}a^{j_{2}}$$

$$(\overline{L}_{1}-) a^{i_{1}}u_{1}\overline{s}_{1}a^{j_{2}} \equiv a^{i_{1}}x_{3}y_{3}a^{j_{2}}$$

$$(-L_{1}) a^{i_{1}}x_{4}y_{4}a^{j_{3}} \equiv a^{i_{1}}u_{1}s_{1}a^{j_{3}}$$

We have that $\lambda(s_1) + j_1 \equiv 0$, $\lambda(\bar{s}_1) + j_2 \equiv 0$, $i_1 + \lambda(u_1) + \lambda(\bar{s}_1) + j_2 \equiv 1$ and $i_1 + \lambda(u_1) + \lambda(s_1) + j_3 \equiv 1$. Hence $i_1 + \lambda(u_1) \equiv 1$ and then $\lambda(s_1) + j_3 \equiv 0$ implies $j_3 = j_1$ and

$$\begin{array}{c|ccccc}
\underline{L_1} & \bar{L}_1 \\
\hline
(a_1)(s_1a^{j_1}) & (a^{i_1}u_1)(\bar{s}_1a^{j_2}) \\
\hline
(a^{i_1}u_1)(s_1a^{j_1}) & (a_1)(\bar{s}_1a^{j_2})
\end{array}$$
(3)

Case 2. L_q is not the first symbol of *I*. Then

We have that $i_1 + \lambda(u_q) + \lambda(s_q) + j_1 \equiv 1$, $i_2 + 1 = i_1 + \lambda(u_q)$, $i_2 + 1 + \lambda(\bar{s}_q) + j_2 \equiv 1$ and $i_3 + \lambda(u_q) + \lambda(\bar{s}_q) + j_2 \equiv 1$. Hence $i_3 + \lambda(u_q) = i_2 + 1 = i_1 + \lambda(u_q)$ and thus $i_3 = i_1$, and then

Suppose now that this results is true for all n(L) < dand $n(L_q) = d$. Then between L_q and \overline{L}_q there exists the symbols L_{q+1}, \ldots, L_{q+d} and $\overline{L}_{q+1}, \ldots, \overline{L}_{q+d}$. Again we have two cases. **Case1.** L_q is the first symbol of *I*. Then q = 1.

$$(L_{1}-) a_{1}s_{1}a^{j_{1}} \equiv x_{1}y_{1}a^{j_{1}}$$

$$(-L_{2}) x_{2}y_{2}a^{j_{2}} \equiv u_{2}s_{2}a^{j_{2}}$$

$$(L_{2}-) a^{i_{2}}a_{2}s_{2}a^{j_{2}} \equiv a^{i_{2}}x_{3}y_{3}a^{j_{2}}$$

$$(-\overline{L}_{2}) a^{i_{3}}x_{4}y_{4}a^{j_{3}} \equiv a^{i_{3}}a_{2}\bar{s}_{2}a^{j_{3}}$$

$$(\overline{L}_{2}-) a^{i_{4}}u_{2}\bar{s}_{2}a^{j_{3}} \equiv a^{i_{4}}x_{5}y_{5}a^{j_{3}}$$

$$(-\overline{L}_{1}) a^{i_{4}}x_{6}y_{6}a^{j_{4}} \equiv a^{i_{4}}a_{1}\bar{s}_{1}a^{j_{4}}$$

$$(\overline{L}_{1}-) a^{i_{5}}u_{1}\bar{s}_{1}a^{j_{4}} \equiv a^{i_{5}}x_{7}y_{7}a^{j_{4}}$$

$$(-L_{1}) a^{i_{5}}x_{8}y_{8}a^{j_{5}} \equiv a^{i_{5}}u_{1}s_{1}a^{j_{5}}$$

We have

$$\begin{split} \lambda(s_1) + j_1 &\equiv 0\\ \lambda(u_2) + \lambda(s_2) + j_2 &\equiv 1\\ i_2 + 1 + \lambda(s_2) + j_2 &\equiv 1\\ i_3 + 1 + \lambda(\bar{s}_2) + j_3 &\equiv 1\\ i_4 + \lambda(u_2) + \lambda(\bar{s}_2) + j_3 &\equiv 1\\ i_4 + 1 + \lambda(\bar{s}_1) + j_4 &\equiv 1\\ i_5 + \lambda(u_1) + \lambda(\bar{s}_1) + j_4 &\equiv 1\\ i_5 + \lambda(u_1) + \lambda(s_1) + j_5 &\equiv 1 \end{split}$$

Since $n(L_2) < d$, from

$$\begin{array}{c|c|c}
L_2 & \bar{L}_2 \\
\hline (a^{i_2}a_2)(s_2a^{j_2}) & (a^{i_4}u_2)(\bar{s}_2a^{j_3}) \\
(u_2)(s_2a^{j_2}) & (a^{i_3}a_q2)(\bar{s}_2a^{j_3})
\end{array} (5)$$

it follows that $i_2 = i_3$ and $i_4 = 0$. Now from $i_4 + 1 + \lambda(\bar{s}_1) + j_4 \equiv 1$ it follows $\lambda(\bar{s}_1) + j_4 \equiv 0$, and from $i_5 + \lambda(u_1) + \lambda(\bar{s}_1) + j_4 \equiv 1$ we obtain $i_5 + \lambda(u_1) \equiv 1$. Now $i_5 + \lambda(u_1) + \lambda(s_1) + j_5 \equiv 1$ implies $\lambda(s_1) + j_5 \equiv 0$. From the first equality we obtain $\lambda(s_1) + j_1 \equiv 0$. Therefore, $j_5 = j_1$ and we have

$$\frac{L_1}{(a_1)(s_1a^{j_1})} \frac{\bar{L}_1}{(a^{i_5}u_1)(\bar{s}_1a^{j_4})} (6)$$

$$\frac{(a^{i_5}u_1)(s_1a^{j_1})}{(a_1)(\bar{s}_1a^{j_4})} = (6)$$

Case 2. L_q is not the first symbol of *I*. Then

We have

$$\begin{split} i_q + \lambda(u_q) + \lambda(s_q) + j_q &\equiv 1 \\ i'_q + 1 + \lambda(s_q) + j_q &\equiv 1 \\ i'_q + \lambda(u_{q+1}) + \lambda(s_{q+1}) + j_{q+1} &\equiv 1 \\ i_{q+1} + 1 + \lambda(s_{q+1}) + j_{q+1} &\equiv 1 \\ i'_{q+1} + 1 + \lambda(\bar{s}_{q+1}) + j'_{q+1} &\equiv 1 \\ i''_{q+1} + \lambda(u_{q+1}) + \lambda(\bar{s}_{q+1}) + j'_{q+1} &\equiv 1 \\ i''_{q+1} + 1 + \lambda(\bar{s}_q) + j''_{q+1} &\equiv 1 \\ i'''_{q+1} + \lambda(u_q) + \lambda(\bar{s}_q) + j''_{q+1} &\equiv 1 \end{split}$$

Since $n(L_{q+1}) = d - 1$ from

$$\frac{L_{q+1}}{(a^{i_{q+1}}a_{q+1})(s_{q+1}a^{j_{q+1}})} | (a^{i''_{q+1}}u_{q+1})(\bar{s}_{q+1}a^{j'_{q+1}})}
(a^{i'_{q}}u_{q+1})(s_{q+1}a^{j_{q+1}}) | (a^{i'_{q+1}}a_{q+1})(\bar{s}_{q+1}a^{j'_{q+1}})}
(7)$$

(7) it follows that $i_{q+1} = i'_{q+1}$ and $i'_q = i''_{q+1}$. Now from $i'_q + 1 + \lambda(s_q) + j_q \equiv 1$ and $i''_{q+1} + 1 + \lambda(\bar{s}_q) + j''_{q+1} \equiv 1$ we get $\lambda(s_q) + j_q \equiv \lambda(\bar{s}_q) + j''_{q+1}$. From $i''_{q+1} + \lambda(u_q) + \lambda(\bar{s}_q) + j''_{q+1} \equiv 1$, $i'''_{q+1} + \lambda(u_q) + \lambda(s_q) + j_q \equiv 1$ it follows that $i''_{q+1} + \lambda(u_q) \equiv i_q + \lambda(u_q)$, therefore $i_q \equiv i''_{q+1}$, and we have

$$\frac{L_q}{(a^{i'_q}a_q)(s_q a^{j_q})} \frac{\bar{L}_q}{(a^{i'_q}a_q)(\bar{s}_q a^{j'_q+1})} (a^{i'_q}u_q)(\bar{s}_q a^{j''_{q+1}}) (8)$$

Similar arguments for R symbols complete the proof. Example The corresponding table 2 for $\tilde{\sigma}(I)$ considered above is

L_1	\bar{L}_1	R_1	\bar{R}_1
$(aa_1)s_1$	$u_1 \bar{s}_1$	$w_1 \bar{a}_1$	$\bar{w}_1(t_1a^3)$
u_1s_1	$(aa_1)\overline{s}_1$	$w_1(t_1a^3)$	$ar{w}_1ar{a}_1$
	_		. –
R_2	R_2	R_3	R_3
$(aw_2)(\bar{a}_2a)$	$(a\bar{w}_2)t_2$	$(a^2w_3)(\bar{a}_3a_3)$	a) $ (a\bar{w}_3)(t_3a)$
$(aw_2)t_2$	$(a\bar{w}_2)(\bar{a}_2a)$	$(a^2w_3)(t_3a)$	a) $ (a\bar{w}_3)(\bar{a}_3a)$
			(9)

All elements of table 2 are long products. It is easy to see that they have length n or 2n - 1. From the definition of the congruence relation ρ it follows that if $x \equiv y \pmod{\rho}$ and $\lambda(x), \lambda(y) \equiv 1$, then $\alpha(x) = \alpha(y)$, where $\alpha(x), \alpha(y)$ are the corresponding long products.

It is easy to prove that in terms of A the system $\tilde{\sigma}(I)$ is a system of equalities corresponding to the same Malcev sequence I in which appears now *n*-ary symbols.

For example, let be

$$\frac{L_{k} \qquad \bar{L}_{k}}{(a^{i_{k}}a_{k})(s_{k}a^{j_{k}}) \qquad (a^{i'_{k}}u_{k})(\bar{s}_{k}a^{j'_{k}})}}{(a^{i'_{k}}u_{k})(s_{k}a^{j_{k}}) \qquad (10)$$

Case 1. Suppose

$$i_k + 1 + \lambda(s_k) + j_k = n$$
$$i'_k + \lambda(u_k) + \lambda(s_k) + j_k = n$$

Then

$$\begin{aligned} &\alpha((a^{i_k}a_k)(s_ka^{j_k})) = \alpha(a^{i_k}, a_k, s_k, a^{j_k}) \\ &\alpha((a^{i'_k}u_k)(s_ka^{j_k})) = \alpha(a^{i'_k}, u_k, s_k, a^{j_k}) \end{aligned}$$

Now if

$$\begin{aligned} &i'_k + \lambda(u_k) + \lambda(\bar{s}_k) + j'_k = n\\ &i_k + 1 + \lambda(\bar{s}_k) + j'_k = n \end{aligned}$$

we have

$$\begin{aligned} &\alpha((a^{i'_k}u_k)(\bar{s}_ka^{j'_k})) = \alpha(a^{i'_k}, u_k, \bar{s}_k, a^{j'_k}) \\ &\alpha((a^{i_k}a_k)(\bar{s}_ka^{j'_k})) = \alpha(a^{i_k}, a_k, \bar{s}_k, a^{j'_k}) \end{aligned}$$

and we obtain the table

$$\frac{L_k^{i_{k+1}}}{\alpha(a^{i_k}, a_k, s_k, a^{j_k})} \frac{\bar{L}_k^{i_{k+1}}}{\alpha(a^{i_k}, u_k, \bar{s}_k, a^{j_k})} (11) \\ \alpha(a^{i_k'}, u_k, s_k a^{j_k}) \alpha(a^{i_k}, a_k, \bar{s}_k, a^{j_k'})$$

Suppose now that

$$i'_k + \lambda(u_k) + \lambda(\bar{s}_k) + j'_k = 2n - 1$$
$$i_k + 1 + \lambda(\bar{s}_k) + j'_k = 2n - 1$$

Then

$$\bar{s}_k = \bar{s}'_k \cdot \bar{s}'_k$$

such that

$$\alpha((a^{i'_k}u_k)(\bar{s}_ka^{j'_k})) = \alpha(a^{i'_k}, u_k, \bar{s}'_k, \alpha(\bar{s}''_k, a^{j'_k}))$$

and

$$\alpha((a^{i'_k}a_k)(\bar{s}_ka^{j'_k}) = \alpha(a^{i'_k}, a_k, \bar{s}'_k, \alpha(\bar{s}''_k, a^{j'_k})).$$

We obtain the table

$$\frac{L_{k}^{i_{k+1}}}{\alpha(a^{i_{k}}, a_{k}, s_{k}, a^{j_{k}})} \frac{\bar{L}_{k}^{i_{k+1}}}{\alpha(a^{i_{k}}, u_{k}, \bar{s}'_{k}, \alpha(\bar{s}''_{k}, a^{j'_{k}}))} \\ \alpha(a^{i'_{k}}, u_{k}, s_{k}, a^{j_{k}}) \alpha(a^{i_{k}}, a_{k}, \bar{s}_{k}, \alpha(\bar{s}''_{k}, a^{j'_{k}}))$$
(12)

Now we can finish this long proof.

Let I be a Malcev sequence and $\sigma(I)$ the corresponding system of equalities in $S(A)/\rho$ and

$$[x][y] = [u][v]$$
(13)

the closing equality of $\sigma(I)$.

For the system $\tilde{\sigma}(I)$ the closing equality is

$$[a^{i_k}][x][y][a^{j_k}] = [a^{i_k}][u][v][a^{j_k}]$$
(14)

wich is equivalent to

$$\alpha(a^{i_k}, x, y, a^{j_k}) = \alpha(a^{i_k}, u, v, a^{j_k})$$
(15)

But the last equality is the closing equality for $\tilde{\sigma}(I)$ in terms of \mathcal{A} . By hypothesis, in \mathcal{A} are satisfied all *n*-ary Malcev conditions. Consequently this equality holds. Hence, also (14) holds. $\mathcal{S}(\mathcal{A})/\rho$ being a cancellation semigroup, from (14) we get (13). Therefore $\mathcal{S}(\mathcal{A})/\rho$ is homomorphic embeddable in a group.

Malcev conditions corresponding to Malcev sequences over the subalphabet $\{L_i^1, \overline{L}_i^1, R_i^1, \overline{R}_i^1 \mid i \in \mathbb{N}\}$ of the alphabet of *n*-ary Malcev symbols $\{L_i^k, \overline{L}_i^k, R_i^k, \overline{R}_i^k \mid k = 1, 2, \dots, n-1; i \in \mathbb{N}\}$ are called **unary Malcev conditions**.

Now we shall prove the following

Theorem 3. If in an n-ary semigroup A with lateral identity are satisfied all unary Malcev conditions then A can be homomorphic embedded in an n-group.

Proof. Let a_1^{n-1} be a lateral identity. For beginning we prove that \mathcal{A} is cancellative.

Suppose that $\alpha(u_1^{n-1}, x) = \alpha(u_1^{n-1}, y)$. Then we have

$$\begin{split} \alpha(u_1^{n-1},x) = & \alpha(u_1^{n-1},\alpha(a_1^{n-1},x)) = \\ = & \alpha(\alpha(u_1^{n-1},a_1),a_2^{n-1},x), \end{split}$$

and

$$x = \alpha(a_1^{n-1}, x) = \alpha(\alpha(a_1^{n-1}, a_1), a_2^{n-1}, x).$$

Then for $I = L_1^1 \overline{L}_1^1$ and

we have

$$\alpha(\alpha(u_1^{n-1}, a_1), a_2^{n-1}, x) = \alpha(\alpha(u_1^{n-1}, a_1), a_2^{n-1}, y)$$

implies

$$\alpha(\alpha(a_1^{n-1}, a_1), a_2^{n-1}, y) = \alpha(\alpha(a_1^{n-1}, a_1), a_2^{n-1}, x)$$

that is

$$\alpha(u_1^{n-1},x)=\alpha(u_1^{n-1},y)\Rightarrow x=y.$$

Hence \mathcal{A} is left cancellative.

Now from $\alpha(x, u_1^{n-1}) = \alpha(y, u_1^{n-1})$ using $I = R_1^1 \overline{R}_1^1$ and the table

$$\frac{R_1^{i}}{\alpha(x, a_1^{n-2}, \alpha(a_{n-1}, u_1^{n-1}))} | \alpha(y, a_1^{n-2}, \alpha(a_{n-1}, a_1^{n-1})) \\ \alpha(x, a_1^{n-2}, \alpha(a_{n-1}, a_1^{n-1})) | \alpha(y, a_1^{n-2}, \alpha(a_{n-1}, u_1^{n-1})) \\ (17)$$

we get x = y, that is A is right cancellative. Consequently, A is a cancellative *n*-semigroup. We note that

$$\frac{L_{i}^{n}}{\alpha(x_{1}^{k}, u_{k+1}^{n}) \mid \alpha(y_{1}^{k}, v_{k+1}^{n})} (18) \\ \alpha(y_{1}^{k}, u_{k+1}^{n}) \mid \alpha(x_{1}^{k}, v_{k+1}^{n})$$

can be rewritten as

and

$$\frac{\frac{R_i^k}{\alpha(u_1^{n-k}, x_1^k)} | \alpha(v_1^{n-k}, y_1^k)}{\alpha(u_1^{n-k}, y_1^k) | \alpha(v_1^{n-k}, x_1^k)}$$
(20)

is equivalent to

In consenquence each *n*-ary Malcev condition can rephrased as an unary Malcev condition.

We conclude this paper with a stand alone proof for Theorem 3.

Let be $\mathcal{A} = (A, \alpha)$ an *n*-semigroup and a_1^{n-1} a sequence in A such that $\alpha(x, a_1^{n-1}) = x, \forall x \in A$.

Zupnik proved (see [7]) that (A, \cdot) where

$$x \cdot y = \alpha(x, a_1^{n-2}, y)$$

is a semigroup with a_{n-1} as a right unit,

$$x \cdot a_{n-1} = x$$

the mapping

$$f: A \to A$$

defined by

$$xf = \alpha(a_{n-1}, x, a_1^{n-2})$$

is an endomorphism of (A, \cdot) and

$$\alpha(x_1^n) = x_1 \cdot x_2 f \cdot x_3 f^2 \cdot \ldots \cdot x_n f^{n-1} \cdot a$$

where

$$a = \alpha(a_{n-1}, a_{n-1}, \dots, a_{n-1})$$

Suppose now that \mathcal{A} is a cancellation *n*-semigroup. We have the following

Lemma 2. Let be A a cancellative n-semigroup. The sequence a_1^{n-1} is a lateral identity iff there exists $a \in A$ such that $\alpha(a_1^{n-1}, a) = a$ or $\alpha(a, a_1^{n-1}) = a$.

Using Lemma 2 it is easy to prove (by induction) that

Lemma 3. In a cancellation *n*-semigroup any circular permutation of a lateral identity is a lateral identity too.

Suppose now that \mathcal{A} is a cancellation *n*-semigroup. It is easy to prove that the above endomorphism is in fact an automorphism $(yf^{-1} = \alpha(a_1^{n-2}, y, a_{n-1}))$,

$$xf^{n-1} \cdot a = a \cdot x, \ \forall x \in A$$

and

$$af = a$$
.

Let now \mathcal{A} be an *n*-semigroup with a lateral identity. We assume that all unary Malcev conditions are satisfied in \mathcal{A} . Then \mathcal{A} is a cancellation *n*-semigroup (see the first part of the proof of Theorem 3). Since the table

in is equivalent to the table

in \mathcal{A} , it follows that the semigroup (\mathcal{A}, \cdot) is homomorphic embeddable in a group.

Let now $(\mu, (G, \cdot))$ be a free group over semigroup (A, \cdot) (see [3],[4]). Then μ is a monomorphism. We extends the automorphism

$$f:(A,\cdot)\to(A,\cdot)$$

to an automorphism

$$\bar{f}: (G, \cdot) \to (G, \cdot)$$

such that

$$\mu \bar{f} = f\mu.$$

Now we have $\alpha(x_1^n)\mu\bar{f} = \alpha(x_1^n)f\mu = (x_1 \cdot x_2f \cdot \ldots \cdot x_nf^{n-1} \cdot a)f\mu = x_1f\mu \cdot x_2f^2\mu \cdot \ldots \cdot x_nf^n\mu \cdot af\mu = x_1\mu\bar{f} \cdot x_2\mu\bar{f}^2 \cdot \ldots \cdot x_n\mu\bar{f}^n \cdot a\mu.$ Let be $\beta: G^n \to G$ defined by

$$\beta(y_1^n) = y_1 \cdot y_2 \bar{f} \cdot \ldots \cdot y_n \bar{f}^{n-1} \cdot a\mu.$$

Then

$$\alpha(x_1^n)\mu\bar{f} = \beta(x_1\mu\bar{f},\ldots,x_n\mu\bar{f}).$$

Finally we prove that (G, β) is an *n*-group. For all $x \in A$ we have

$$x\mu\bar{f}^{n-1}\cdot a\mu = xf^{n-1}\mu\cdot a\mu = (xf^{n-1}\cdot a)\mu = (a\cdot x)\mu = a\mu\cdot x\mu,$$

therefore

$$x\mu\bar{f}^{n-1} = a\mu\cdot x\mu\cdot (a\mu)^{-1}.$$

The set $A\mu$ being a generating subset of the group (G, \cdot) for any $y \in G$

$$y = (x_1\mu)^{\varepsilon_1} \cdot (x_2\mu)^{\varepsilon_2} \cdot \ldots \cdot (x_k\mu)^{\varepsilon_k}$$

 $x_i \in A, \ \varepsilon_i = \pm 1$ for all $i = 1, 2, \dots, k$. Then $y\bar{f}^{n-1} = (x_1\mu\bar{f}^{n-1})^{\varepsilon_1}\cdot\ldots\cdot(x_k\mu\bar{f}^{n-1})^{\varepsilon_k} = (a\mu\cdot x_1\mu\cdot(a\mu)^{-1})^{\varepsilon_1}\cdot\ldots\cdot(a\mu\cdot x_k\mu\cdot(a\mu)^{-1})^{\varepsilon_k} = a\mu\cdot (x_1\mu)^{\varepsilon_1}\cdot(x_2\mu)^{\varepsilon_2}\cdot\ldots\cdot(x_k\mu)^{\varepsilon_k}\cdot(a\mu)^{-1} = a\mu\cdot y\cdot (a\mu)^{-1}$. From [6] it follows that (G,β) is an *n*-group. In conclusion

$$\mu \bar{f}: (A, \alpha) \to (G, \beta)$$

is a homomorphic embedding.

References

- [1] Belousov, V.D., *n*-arfie kvazigruppî, Ştiinţa, Kişinev, 1972.
- [2] Bruck, R.H., A survey of binary systems, Springer Verlag, Berlin - Göttingen - Heidelberg, 1958.
- [3] Clifford, A.H., Preston, G.B., The algebraic theory of semigroups, Amer. Math. Soc., Providence, Rhode Island, 1967.
- [4] Cohn, P.M., Universal algebra, Harper Row, New York, 1965.
- [5] Mon, K.D., Sioson, F.M., *n*-semigroups, semigroups and function reprezentations, Fund. Math. 59 (1966), 233-241.
- [6] Timm, J., Zur gruppentheoretischen Beschreibung *n*-stellinger Strukturen, Publ. Math. Debrecen, 17 (1970), 183-192.
- [7] Zupnik, D., Polyadic semigroups, Publ. Math. 14 (1967), 273-279.