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ABSTRACT

We prove that an cancellative n-groupoid A can be homotopic embedded in an n-group
if and only if in A are satisfied all n-ary Malcev conditions. Now we shall prove that
in the presence of associative law we obtain homomorphic embeddings. Furthermore,
if A has a lateral identity a such embeddings is assured by a subset of n-ary Malcev
conditions - unary Malcev conditions.
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We prove that an cancellative n-groupoid A can be
homotopic embedded in an n-group if and only if in A
are satisfied all n-ary Malcev conditions.

Now we shall prove that in the presence of asso-
ciative law we obtain homomorphic embeddings. Fur-
thermore, if A has a lateral identity a such embeddings
is assured by a subset of n-ary Malcev conditions -
unary Malcev conditions.

For an abbreviation we shall use the follwing nota-
tions(see [1]):

(x1, x2, . . . , xn) = xn
1 ,

respectively xn if

x1 = x2 = · · · = xn = x.

Let A = (A,α) be an n-groupoid (i.e α : An →
A). If α satisfies the associative law

α(α(xn
1 ), x

2n−1
n+1 ) = α(xi

1, α(x
n+i
i+1 ), x

2n−1
n+i+1)

for i = 1, 2, . . . , n− 1 and for all x1, . . . , x2n−1 in A
then A is an n-semigroup.

The sequence an−1
1 is an lateral identity in the n-

groupoid A if

α(an−1
1 , x) = α(x, an−1

1 ) = x

for all x in A.
The following laws, wich may of may not hold in

a given n-groupoid A , are known as left and right
cancellation laws, respectively,

α(un−1
1 , x) = α(un−1

1 , y) ⇒ x = y

α(x, un−1
1 ) = α(y, un−1

1 ) ⇒ x = y

An n-groupoid A is a cancellation n-groupoid if

α(ui−1
1 , x, un

i+1) = α(ui−1
1 , y, un

i+1) ⇒ x = y

for i = 1, 2, . . . , n− 1.
In [5] was proved that an n-semigroup wich is left

and right cancellative is a cancellation n-semigroup.
An important concept in the theory of n-

semigroups is that of a covering semigroup.

Definition 1. (see [5]) A binary A = (A, ·) semi-
group is said to be a covering semigroup of an n-
semigroup A = (A,α) provided A has the following
properties:

• the set A is a generating subset of A;

• α(an1 ) = a1 · a2 . . . an for all a1, . . . , an ∈ A.

Generalizing an result from [5] we have

Theorem 1. Every cancellation n-semigroup has a
cancellation covering semigroup.

Outline of proof. Let A = (A,α) be an cancel-
lation n-semigroup. Denote by S ′ = (S′, ·) the free
semigroup with identity generated by the set A. Let us
consider the binary relation π ⊆ S′2 defined by: sπs′

iff

1. there exist s1, s2, s3 ∈ S′ such that λ(s2) = n
(where λ(s2) is the lenght of s2), s = s1s2s3 and
s′ = s1α(s2)s3,or

2. λ(s) = λ(s′) < n and there is a s′′ ∈ S′ with
λ(s′′) = n− λ(s) such that α(ss′) = α(ss′′), or
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3. s = 1 (the identity of S ′), λ(s′) = n − 1 and
α(s′, a) = a for some a ∈ A.

Denote by ρ the equivalence on S′ generated by π.
Then ρ is a congruence on S ′ and S ′/ρ is a cancella-
tion covering semigroup of A.

It is easy to prove the following

Lemma 1. Let be A a covering semigroup of the n-
semigroup A. If A can be homomorphic embedded in
a group then A can be homomorphic embedded in a
n-group.

Theorem 2. A cancellation n-semigroup A = (A,α)
without lateral identities can be homorphical embed-
ded in a n-group iff in A are satisfied all n-ary Malcev
conditions.

Proof. Suppose that A can be homomorphical em-
bedded in an n-group G. All n-ary Malcev conditions
are satisfied in G. Consequently, these conditions are
satisfied in A.

Conversely, assume that all n-ary Malcev condi-
tions are satisfied in A. By Lemma 1 it is sufficient
to prove that the covering semigroup S ′(A)/ρ is ho-
momorphic embeddable in a binary group. A be-
ing without lateral identities, [1] is a prime unit in
S ′(A)/ρ. Therefore it is sufficient to prove that the
semigroup S(A)/ρ = (S ′(A)/ρ− {[1]}, ·) is embed-
dable in a group. There exists such an embedding iff in
S(A)/ρ are satisfied all binary Malcev conditions(see
[3]). Since {[a] | a ∈ A} is a generating set of S(A)/ρ
it is sufficient (see [3]) to consider only Malcev condi-
tions according the table

Li L̄i Ri R̄i

[ai][si] [ui][s̄i] [wi][āi] [w̄i][ti]

[ui][si] [ai][s̄i] [wi][ti] [w̄i][āi]

(1)

Let I be a Malcev sequence and σ(I) the corre-
sponding system of equalities. Adjoining the closing
equality to σ(I) we obtain the system σ̃(I). To each
equality of σ̃(I) we assign a tag - the corresponding
pair of symbols of I .

Example. Let I = R1L1R2L2R3L2R3R2L1R1.
The tagged system σ̃(I) is

(R1L1) [w1][ā1] = [u1][s1]

(L1R2) [a1][s1] = [w2][t2]

(R2L2) [w2][ā2] = [u2][s2]

(L2R3) [a2][s2] = [w3][t3]

(R3L2) [w3][ā3] = [a2][s̄2]

(L2, R3) [u2][s̄2] = [w̄3][ā3]

(R3, R2) [w̄3][t3] = [w̄2][ā2]

(R2, L1) [w̄2][t2] = [a1][s̄1]

(L1, R1) [u1][s̄1] = [w̄1][ā1]

(R1, R1) [w̄1][t1] = [w1][t1] (the closing equality)

From the definition of the congruence relation ρ it
folows:

• if [x] = [y] then λ(x) ≡ λ(y)(mod n− 1), where
λ(x) is the length of x;

• in each class [x] there is an element x′ with
λ(x′) ≤ n− 1.

Consequently, we can suppose that in the table 1
each representative has the length ≤ n− 1.

Now we construct a new system of equalities σ̃ in
wich member has the length ≡ 1(mod n−1). Let a be
an element of A.

1. If L1 is the first symbol of I ,

(L1−) [a1][s1] = [x][y]

we choose 0 ≤ j1 ≤ n−1 such that λ(s1)+j1 ≡
0.

2. If R1 is the first symbol of I ,

(R1−) [w1][a1] = [x][y]

we choose 0 ≤ i1 ≤ n−1 such that i1+λ(w1) ≡
0.

We obtain the first equality of σ̃(I) by multiplying the
first equality of σ(I) on the right by aj1 in the first case
and on the left by ai1 in the second case.

We obtain the second equality of σ̃(I) from the sec-
ond equality of σ(I) in the following way: if the first
(second) factor of the left member of the second equal-
ity of σ(I) is equal to the first (second) factor of the
right member in the first equality of σ(I) then we mul-
tiply the second equality of σ(I) by the left by ai1 and
by the right by aj2 (respectively, by the left by ai2 and
by the right by aj1) where 0 ≤ i2, j2 ≤ n− 1 are such
that the length of the left member of new equality be
≡ 1.

In the same manner we obtain the kth equality of
σ̃(I) from the kth equality of σ(I).

Example. We apply this procedure to the system
σ(I) considered in the previous example.

Suppose n = 5, λ(u1) = 2, λ(s1) = 3, λ(s̄1) =
3, λ(u2) = 2, λ(s2) = 1, λ(s̄2) = 1, λ(w1) =
4, λ(w̄1) = 4, λ(t1) = 2, λ(w2) = 2, λ(w̄2) =
2, λ(t2) = 2, λ(w3) = 1, λ(w̄3) = 2, λ(t3) = 1.

The tagged system σ̃(I) is

(R1L1) w1ā1 ≡ u1s1

(L1R2) aa1s1 ≡ aw2t2

(R2L2) aw2ā2a ≡ au2s2a

(L2R3) a
2a2s2a ≡ a2w3t3a

(R3L2) a
2w3ā3a ≡ a2a2s̄2a

(L2R3) au2s̄2a ≡ aw3a3a

(R3R2) aw3t3a ≡ aw̄2ā2a

(R2L1) aw̄2t2 ≡ aa1s̄1

(L1R1) u1s̄1 ≡ w̄1ā1

(R1R1) w̄1t1a
3 ≡ w1t1a

3
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Now we prove that σ̃(I) is a system of equalities
corresponding to same Malcev sequence I . Hence, we
must show that the equalities of σ̃(I) are obtained ac-
cording the table

Lk L̄k Rk R̄k

(aikak)(skajk ) (a
i′kuk)(s̄ka

j′k ) (aikwk)(ākajk ) (a
i′k w̄k)(tka

j′k )

(a
i′kuk)(skajk ) (aikak)(s̄ka

j′k ) (aikwk)(tka
j′k ) (a

i′k w̄k)(ākajk )

(2)
Let be Lq any symbol of I . We use an inductive

argument on n(Lq) = the number of L symbols be-
tween Lq and Lq. Suppose n(Lq) = 0. Then q = 1.
We have two cases.
Case 1. L1 is the first symbol of I . Then

(L1−) a1s1a
j1 ≡ x1y1a

j1

. . . . . . . . . . . . . . . . . . . . . . . .

(−L1) x2y2a
j2 ≡ a1s̄1a

j2

(L1−) ai1u1s̄1a
j2 ≡ ai1x3y3a

j2

. . . . . . . . . . . . . . . . . . . . . . . .

(−L1) a
i1x4y4a

j3 ≡ ai1u1s1a
j3

We have that λ(s1)+ j1 ≡ 0, λ(s̄1)+ j2 ≡ 0, i1+
λ(u1)+λ(s̄1)+j2 ≡ 1 and i1+λ(u1)+λ(s1)+j3 ≡ 1.
Hence i1+λ(u1) ≡ 1 and then λ(s1)+j3 ≡ 0 implies
j3 = j1 and

L1 L̄1

(a1)(s1a
j1) (ai1u1)(s̄1a

j2)

(ai1u1)(s1a
j1) (a1)(s̄1a

j2)

(3)

Case 2. Lq is not the first symbol of I . Then

( ) . . . . . . . . . . . . . . . . . . . . . . . .

(−Lq) a
i1x1y1a

j1 ≡ ai1uqsqa
j1

(Lq−) ai2aqsqa
j1 ≡ ai2x2y2a

j1

. . . . . . . . . . . . . . . . . . . . . . . .

(−Lq) a
i2x3y3a

j2 ≡ ai2aq s̄qa
j2

(Lq) a
i3uq s̄qa

j2 ≡ ai3x4y4a
j2

We have that i1+λ(uq)+λ(sq)+j1 ≡ 1, i2+1 =
i1 +λ(uq), i2+1+λ(s̄q)+ j2 ≡ 1 and i3 +λ(uq)+
λ(s̄q) + j2 ≡ 1. Hence i3 + λ(uq) = i2 + 1 = i1 +
λ(uq) and thus i3 = i1, and then

Lq L̄q

(ai2aq)(sqa
j1) (ai1uq)(s̄qa

j2)

(ai1uq)(sqa
j1) (ai2aq)(s̄qa

j2)

(4)

Suppose now that this results is true for all n(L) < d
and n(Lq) = d. Then between Lq and Lq there ex-
ists the symbols Lq+1, . . . , Lq+d and Lq+1, . . . , Lq+d.
Again we have two cases.

Case1. Lq is the first symbol of I . Then q = 1.

(L1−) a1s1a
j1 ≡ x1y1a

j1

. . . . . . . . . . . . . . . . . . . . . . . .

(−L2) x2y2a
j2 ≡ u2s2a

j2

(L2−) ai2a2s2a
j2 ≡ ai2x3y3a

j2

. . . . . . . . . . . . . . . . . . . . . . . .

(−L2) a
i3x4y4a

j3 ≡ ai3a2s̄2a
j3

(L2−) ai4u2s̄2a
j3 ≡ ai4x5y5a

j3

. . . . . . . . . . . . . . . . . . . . . . . .

(−L1) a
i4x6y6a

j4 ≡ ai4a1s̄1a
j4

(L1−) ai5u1s̄1a
j4 ≡ ai5x7y7a

j4

. . . . . . . . . . . . . . . . . . . . . . . .

(−L1) a
i5x8y8a

j5 ≡ ai5u1s1a
j5

We have

λ(s1) + j1 ≡ 0

λ(u2) + λ(s2) + j2 ≡ 1

i2 + 1 + λ(s2) + j2 ≡ 1

i3 + 1 + λ(s̄2) + j3 ≡ 1

i4 + λ(u2) + λ(s̄2) + j3 ≡ 1

i4 + 1 + λ(s̄1) + j4 ≡ 1

i5 + λ(u1) + λ(s̄1) + j4 ≡ 1

i5 + λ(u1) + λ(s1) + j5 ≡ 1

Since n(L2) < d, from

L2 L̄2

(ai2a2)(s2a
j2) (ai4u2)(s̄2a

j3)

(u2)(s2a
j2) (ai3aq2)(s̄2a

j3)

(5)

it follows that i2 = i3 and i4 = 0. Now from i4 + 1+
λ(s̄1) + j4 ≡ 1 it follows λ(s̄1) + j4 ≡ 0, and from
i5+λ(u1)+λ(s̄1)+j4 ≡ 1 we obtain i5+λ(u1) ≡ 1.
Now i5+λ(u1)+λ(s1)+j5 ≡ 1 implies λ(s1)+j5 ≡
0. From the first equality we obtain λ(s1) + j1 ≡ 0.
Therefore, j5 = j1 and we have

L1 L̄1

(a1)(s1a
j1) (ai5u1)(s̄1a

j4)

(ai5u1)(s1a
j1) (a1)(s̄1a

j4)

(6)

51



Case 2. Lq is not the first symbol of I . Then

. . . . . . . . . . . . . . . . . . . . . . . .

(−Lq) a
iqx1y1a

jq ≡ aiquqsqa
jq

(Lq−) ai
′
qaqsqa

jq ≡ ai
′
qx2y2a

jq

. . . . . . . . . . . . . . . . . . . . . . . .

(−Lq+1) a
i′qx3y3a

jq+1 ≡ ai
′
quq+1sq+1a

jq+1

(Lq+1−) aiq+1aq+1sq+1a
jq+1 ≡ aiq+1x4y4a

jq+1

. . . . . . . . . . . . . . . . . . . . . . . .

(−Lq+1) a
i′q+1x5y5a

j′q+1 ≡ ai
′
q+1aq+1s̄q+1a

j′q+1

(Lq+1−) ai
′′
q+1uq+1s̄q+1a

j′q+1 ≡ ai
′′
q+1x6y6a

j′q+1

. . . . . . . . . . . . . . . . . . . . . . . .

(−Lq) a
i′′q+1x7y7a

j′′q+1 ≡ ai
′′
q+1aq s̄qa

j′′q+1

(Lq−) ai
′′′
q+1uq s̄qa

j′′q+1 ≡ ai
′′′
q+1x8y8a

j′′q+1

We have

iq + λ(uq) + λ(sq) + jq ≡ 1

i′q + 1 + λ(sq) + jq ≡ 1

i′q + λ(uq+1) + λ(sq+1) + jq+1 ≡ 1

iq+1 + 1 + λ(sq+1) + jq+1 ≡ 1

i′q+1 + 1 + λ(s̄q+1) + j′q+1 ≡ 1

i′′q+1 + λ(uq+1) + λ(s̄q+1) + j′q+1 ≡ 1

i′′q+1 + 1 + λ(s̄q) + j′′q+1 ≡ 1

i′′′q+1 + λ(uq) + λ(s̄q) + j′′q+1 ≡ 1

Since n(Lq+1) = d− 1 from

Lq+1 L̄q+1

(aiq+1aq+1)(sq+1a
jq+1) (ai

′′
q+1uq+1)(s̄q+1a

j′q+1)

(ai
′
quq+1)(sq+1a

jq+1) (ai
′
q+1aq+1)(s̄q+1a

j′q+1)
(7)

it follows that iq+1 = i′q+1 and i′q = i′′q+1.
Now from i′q +1+ λ(sq) + jq ≡ 1 and i′′q+1 + 1+

λ(s̄q) + j′′q+1 ≡ 1 we get λ(sq) + jq ≡ λ(s̄q) + j′′q+1.
From i′′′q+1 + λ(uq) + λ(s̄q) + j′′q+1 ≡ 1, i′′′q+1 +

λ(uq)+λ(sq)+jq ≡ 1 and iq+λ(uq)+λ(sq)+jq ≡ 1
it follows that i′′′q+1 + λ(uq) ≡ iq + λ(uq), therefore
iq ≡ i′′′q+1, and we have

Lq L̄q

(ai
′
qaq)(sqa

jq ) (aiquq)(s̄qa
j′′q+1)

(ai
′
quq)(sqa

jq ) (ai
′
qaq)(s̄qa

j′′q+1)

(8)

Similar arguments for R symbols complete the proof.
Example The corresponding table 2 for σ̃(I) con-

sidered above is

L1 L̄1 R1 R̄1

(aa1)s1 u1s̄1 w1ā1 w̄1(t1a
3)

u1s1 (aa1)s̄1 w1(t1a
3) w̄1ā1

R2 R̄2 R3 R̄3

(aw2)(ā2a) (aw̄2)t2 (a2w3)(ā3a) (aw̄3)(t3a)

(aw2)t2 (aw̄2)(ā2a) (a2w3)(t3a) (aw̄3)(ā3a)

(9)

All elements of table 2 are long products. It is easy
to see that they have length n or 2n − 1. From the
definition of the congruence relation ρ it follows that if
x ≡ y(mod ρ) and λ(x), λ(y) ≡ 1, then α(x) = α(y),
where α(x), α(y) are the corresponding long products.

It is easy to prove that in terms of A the system
σ̃(I) is a system of equalities corresponding to the
same Malcev sequence I in wich appears now n-ary
symbols.

For example, let be

Lk L̄k

(aikak)(ska
jk) (ai

′
kuk)(s̄ka

j′k)

(ai
′
kuk)(ska

jk) (aikak)(s̄ka
j′k)

(10)

Case 1. Suppose

ik + 1 + λ(sk) + jk = n

i′k + λ(uk) + λ(sk) + jk = n

Then

α((aikak)(ska
jk)) = α(aik , ak, sk, a

jk)

α((ai
′
kuk)(ska

jk)) = α(ai
′
k , uk, sk, a

jk)

Now if

i′k + λ(uk) + λ(s̄k) + j′k = n

ik + 1 + λ(s̄k) + j′k = n

we have

α((ai
′
kuk)(s̄ka

j′k)) = α(ai
′
k , uk, s̄k, a

j′k)

α((aikak)(s̄ka
j′k)) = α(aik , ak, s̄k, a

j′k)

and we obtain the table

L
ik+1

k L̄
ik+1

k

α(aik , ak, sk, a
jk) α(aik , uk, s̄k, a

j′k)

α(ai
′
k , uk, ska

jk) α(aik , ak, s̄k, a
j′k)

(11)

Suppose now that

i′k + λ(uk) + λ(s̄k) + j′k = 2n− 1

ik + 1 + λ(s̄k) + j′k = 2n− 1

Then
s̄k = s̄′k · s̄′′k

such that

α((ai
′
kuk)(s̄ka

j′k)) = α(ai
′
k , uk, s̄

′
k, α(s̄

′′
k , a

j′k))

and

α((ai
′
kak)(s̄ka

j′k) = α(ai
′
k , ak, s̄

′
k, α(s̄

′′
k , a

j′k)).

We obtain the table

L
ik+1

k L̄
ik+1

k

α(aik , ak, sk, a
jk) α(aik , uk, s̄

′
k, α(s̄

′′
k , a

j′k ))

α(ai′k , uk, sk, a
jk) α(aik , ak, s̄k, α(s̄

′′
k , a

j′k ))
(12)
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Now we can finish this long proof.
Let I be a Malcev sequence and σ(I) the corre-

sponding system of equalities in S(A)/ρ and

[x][y] = [u][v] (13)

the closing equality of σ(I).
For the system σ̃(I) the closing equality is

[aik ][x][y][ajk ] = [aik ][u][v][ajk ] (14)

wich is equivalent to

α(aik , x, y, ajk) = α(aik , u, v, ajk) (15)

But the last equality is the closing equality for σ̃(I)
in terms of A. By hypothesis, in A are satisfied all
n-ary Malcev conditions. Consequently this equality
holds. Hence, also (14) holds. S(A)/ρ being a can-
cellation semigroup, from (14) we get (13). Therefore
S(A)/ρ is homomorphic embeddable in a group.

Malcev conditions corresponding to Malcev se-
quences over the subalphabet {L1

i , L
1

i , R
1
i , R

1

i | i ∈
N} of the alphabet of n-ary Malcev symbols
{Lk

i , L
k

i , R
k
i , R

k

i | k = 1, 2, . . . , n − 1; i ∈ N} are
called unary Malcev conditions.

Now we shall prove the following

Theorem 3. If in an n-ary semigroup A with lateral
identity are satisfied all unary Malcev conditions then
A can be homomorphic embedded in an n-group.

Proof. Let an−1
1 be a lateral identity. For beginning

we prove that A is cancellative.
Suppose that α(un−1

1 , x) = α(un−1
1 , y). Then we

have

α(un−1
1 , x) =α(un−1

1 , α(an−1
1 , x)) =

=α(α(un−1
1 , a1), a

n−1
2 , x),

and

x = α(an−1
1 , x) = α(α(an−1

1 , a1), a
n−1
2 , x).

Then for I = L1
1L

1

1 and

L1
1 L̄1

1

α(α(un−1
1 , a1), a

n−1
2 , x) α(α(an−1

1 , a1), a
n−1
2 , y)

α(α(an−1
1 , a1), a

n−1
2 , x) α(α(un−1

1 , a1), a
n−1
2 , y)

(16)
we have

α(α(un−1
1 , a1), a

n−1
2 , x) = α(α(un−1

1 , a1), a
n−1
2 , y)

implies

α(α(an−1
1 , a1), a

n−1
2 , y) = α(α(an−1

1 , a1), a
n−1
2 , x)

that is

α(un−1
1 , x) = α(un−1

1 , y) ⇒ x = y.

Hence A is left cancellative.
Now from α(x, un−1

1 ) = α(y, un−1
1 ) using I =

R1
1R

1

1 and the table

R1
1 R̄1

1

α(x, an−2
1 , α(an−1, u

n−1
1 )) α(y, an−2

1 , α(an−1, a
n−1
1 ))

α(x, an−2
1 , α(an−1, a

n−1
1 )) α(y, an−2

1 , α(an−1, u
n−1
1 ))

(17)
we get x = y, that is A is right cancellative. Con-
sequently, A is a cancellative n-semigroup. We note
that

Lk
i L̄k

i

α(xk
1 , u

n
k+1) α(yk1 , v

n
k+1)

α(yk1 , u
n
k+1) α(xk

1 , v
n
k+1)

(18)

can be rewritten as

L1
i L̄1

i

α(α(xk
1 , a

n−k
1 ), an−1

n−k+1, u
n
k+1) α(α(yk

1 , a
n−k
1 ), an−1

n−k+1, v
n
k+1)

α(α(yk
1 , a

n−k
1 ), an−1

n−k+1, u
n
k+1) α(α(xk

1 , a
n−k
1 ), an−1

n−k+1, v
n
k+1)

(19)
and

Rk
i R̄k

i

α(un−k
1 , xk

1) α(vn−k
1 , yk1 )

α(un−k
1 , yk1 ) α(vn−k

1 , xk
1)

(20)

is equivalent to

Rk
i R̄k

i

α(un−k
1 , ak−1

1 , α(an−1
k , xk

1 )) α(vn−k
1 , ak−1

1 , α(an−1
k , yk

1 ))

α(un−k
1 , ak−1

1 , α(an−1
k , yk

1 )) α(vn−k
1 , ak−1

1 , α(an−1
k , xk

1 ))

(21)
In consenquence each n-ary Malcev condition can
rephrased as an unary Malcev condition.

We conclude this paper with a stand alone proof for
Theorem 3.

Let be A = (A,α) an n-semigroup and an−1
1 a

sequence in A such that α(x, an−1
1 ) = x, ∀x ∈ A.

Zupnik proved (see [7]) that (A, ·) where

x · y = α(x, an−2
1 , y)

is a semigroup with an−1 as a right unit,

x · an−1 = x,

the mapping
f : A → A

defined by

xf = α(an−1, x, a
n−2
1 )

is an endomorphism of (A, ·) and

α(xn
1 ) = x1 · x2f · x3f

2 · . . . · xnf
n−1 · a

where
a = α(an−1, an−1, . . . , an−1).

Suppose now that A is a cancellation n-semigroup.
We have the following

Lemma 2. Let be A a cancellative n-semigroup. The
sequence an−1

1 is a lateral identity iff there exists a ∈
A such that α(an−1

1 , a) = a or α(a, an−1
1 ) = a.
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Using Lemma 2 it is easy to prove (by induction)
that

Lemma 3. In a cancellation n-semigroup any circu-
lar permutation of a lateral identity is a lateral identity
too.

Suppose now that A is a cancellation n-semigroup.
It is easy to prove that the above endomorphism is in
fact an automorphism (yf−1 = α(an−2

1 , y, an−1)),

xfn−1 · a = a · x, ∀x ∈ A

and
af = a.

Let now A be an n-semigroup with a lateral iden-
tity. We assume that all unary Malcev conditions are
satisfied in A . Then A is a cancellation n-semigroup
(see the first part of the proof of Theorem 3). Since the
table

Lk L̄k Rk R̄k

xksk yks̄k wksk w̄kyk
yksk xks̄k wkyk w̄kxk

(22)

in is equivalent to the table

L1
k L̄1

k R1
k R̄1

k

α(xk, a
n−1
2 , sk) α(yk, a

n−1
2 , s̄k) α(wk, a

n−1
2 , xk) α(w̄k, a

n−1
2 , yk )

α(yk, a
n−1
2 , sk) α(xk, a

n−1
2 , s̄k) α(wk, a

n−1
2 , yk) α(w̄k, a

n−1
2 , xk)

(23)
in A , it follows that the semigroup (A, ·) is homomor-
phic embeddable in a group.

Let now (µ, (G, ·)) be a free group over semigroup
(A, ·) (see [3],[4]). Then µ is a monomorphism. We
extends the automorphism

f : (A, ·) → (A, ·)

to an automorphism

f̄ : (G, ·) → (G, ·)

such that
µf̄ = fµ.

Now we have α(xn
1 )µf̄ = α(xn

1 )fµ = (x1 ·x2f · . . . ·
xnf

n−1 · a)fµ = x1fµ · x2f
2µ · . . . · xnf

nµ · afµ =
x1µf̄ · x2µf̄

2 · . . . · xnµf̄
n · aµ.

Let be β : Gn → G defined by

β(yn1 ) = y1 · y2f̄ · . . . · ynf̄n−1 · aµ.

Then

α(xn
1 )µf̄ = β(x1µf̄ , . . . , xnµf̄).

Finally we prove that (G, β) is an n-group. For all
x ∈ A we have

xµf̄n−1·aµ = xfn−1µ·aµ = (xfn−1·a)µ = (a·x)µ = aµ·xµ,

therefore

xµf̄n−1 = aµ · xµ · (aµ)−1.

The set Aµ being a generating subset of the group
(G, ·) for any y ∈ G

y = (x1µ)
ε1 · (x2µ)

ε2 · . . . · (xkµ)
εk ,

xi ∈ A, εi = ±1 for all i = 1, 2, . . . , k. Then
yf̄n−1 = (x1µf̄

n−1)ε1 · . . . · (xkµf̄
n−1)εk = (aµ ·

x1µ · (aµ)−1)ε1 · . . . · (aµ · xkµ · (aµ)−1)εk = aµ ·
(x1µ)

ε1 · (x2µ)
ε2 · . . . · (xkµ)

εk · (aµ)−1 = aµ · y ·
(aµ)−1. From [6] it follows that (G, β) is an n-group.

In conclusion

µf̄ : (A,α) → (G, β)

is a homomorphic embedding.
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