Homomorphic embeddings in n-groups

Mona Cristescu
"Petru Maior" University of Tg. Mureş, Romania
e-mail: mcristescu@science.upm.ro

Abstract

We prove that an cancellative n -groupoid \mathcal{A} can be homotopic embedded in an n -group if and only if in \mathcal{A} are satisfied all n-ary Malcev conditions. Now we shall prove that in the presence of associative law we obtain homomorphic embeddings. Furthermore, if \mathcal{A} has a lateral identity a such embeddings is assured by a subset of n -ary Malcev conditions - unary Malcev conditions.

Keywords: cancellation law, covering semigroup, homotopic embedding, n -ary Malcev conditions, n-groupoid, unary Malcev conditions.

We prove that an cancellative n -groupoid \mathcal{A} can be homotopic embedded in an n-group if and only if in \mathcal{A} are satisfied all n-ary Malcev conditions.

Now we shall prove that in the presence of associative law we obtain homomorphic embeddings. Furthermore, if \mathcal{A} has a lateral identity a such embeddings is assured by a subset of n-ary Malcev conditions unary Malcev conditions.

For an abbreviation we shall use the follwing notations(see [1]):

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{n}
$$

respectively x^{n} if

$$
x_{1}=x_{2}=\cdots=x_{n}=x
$$

Let $\mathcal{A}=(A, \alpha)$ be an n-groupoid (i.e $\alpha: A^{n} \rightarrow$ $A)$. If α satisfies the associative law

$$
\alpha\left(\alpha\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=\alpha\left(x_{1}^{i}, \alpha\left(x_{i+1}^{n+i}\right), x_{n+i+1}^{2 n-1}\right)
$$

for $i=1,2, \ldots, n-1$ and for all $x_{1}, \ldots, x_{2 n-1}$ in A then \mathcal{A} is an \mathbf{n}-semigroup.

The sequence a_{1}^{n-1} is an lateral identity in the n groupoid \mathcal{A} if

$$
\alpha\left(a_{1}^{n-1}, x\right)=\alpha\left(x, a_{1}^{n-1}\right)=x
$$

for all x in A.
The following laws, wich may of may not hold in a given n -groupoid \mathcal{A}, are known as left and right cancellation laws, respectively,

$$
\alpha\left(u_{1}^{n-1}, x\right)=\alpha\left(u_{1}^{n-1}, y\right) \Rightarrow x=y
$$

$$
\alpha\left(x, u_{1}^{n-1}\right)=\alpha\left(y, u_{1}^{n-1}\right) \Rightarrow x=y
$$

An n -groupoid \mathcal{A} is a cancellation \mathbf{n}-groupoid if

$$
\alpha\left(u_{1}^{i-1}, x, u_{i+1}^{n}\right)=\alpha\left(u_{1}^{i-1}, y, u_{i+1}^{n}\right) \Rightarrow x=y
$$

for $i=1,2, \ldots, n-1$.
In [5] was proved that an n-semigroup wich is left and right cancellative is a cancellation n-semigroup.

An important concept in the theory of n semigroups is that of a covering semigroup.

Definition 1. (see [5]) A binary $\overline{\mathcal{A}}=(\bar{A}, \cdot)$ semigroup is said to be a covering semigroup of an n semigroup $\mathcal{A}=(A, \alpha)$ provided $\overline{\mathcal{A}}$ has the following properties:

- the set A is a generating subset of $\overline{\mathcal{A}}$;
- $\alpha\left(a_{1}^{n}\right)=a_{1} \cdot a_{2} \ldots a_{n}$ for all $a_{1}, \ldots, a_{n} \in A$.

Generalizing an result from [5] we have
Theorem 1. Every cancellation n-semigroup has a cancellation covering semigroup.

Outline of proof. Let $\mathcal{A}=(A, \alpha)$ be an cancellation n-semigroup. Denote by $\mathcal{S}^{\prime}=\left(S^{\prime}, \cdot\right)$ the free semigroup with identity generated by the set A. Let us consider the binary relation $\pi \subseteq S^{\prime 2}$ defined by: $s \pi s^{\prime}$ iff

1. there exist $s_{1}, s_{2}, s_{3} \in S^{\prime}$ such that $\lambda\left(s_{2}\right)=n$ (where $\lambda\left(s_{2}\right)$ is the lenght of s_{2}), $s=s_{1} s_{2} s_{3}$ and $s^{\prime}=s_{1} \alpha\left(s_{2}\right) s_{3}$, or
2. $\lambda(s)=\lambda\left(s^{\prime}\right)<n$ and there is a $s^{\prime \prime} \in S^{\prime}$ with $\lambda\left(s^{\prime \prime}\right)=n-\lambda(s)$ such that $\alpha\left(s s^{\prime}\right)=\alpha\left(s s^{\prime \prime}\right)$, or
3. $s=1$ (the identity of $\left.\mathcal{S}^{\prime}\right), \lambda\left(s^{\prime}\right)=n-1$ and $\alpha\left(s^{\prime}, a\right)=a$ for some $a \in A$.

Denote by ρ the equivalence on S^{\prime} generated by π. Then ρ is a congruence on \mathcal{S}^{\prime} and $\mathcal{S}^{\prime} / \rho$ is a cancellation covering semigroup of \mathcal{A}.

It is easy to prove the following
Lemma 1. Let be $\overline{\mathcal{A}}$ a covering semigroup of the n semigroup \mathcal{A}. If $\overline{\mathcal{A}}$ can be homomorphic embedded in a group then \mathcal{A} can be homomorphic embedded in a n-group.

Theorem 2. A cancellation n-semigroup $\mathcal{A}=(A, \alpha)$ without lateral identities can be homorphical embedded in a n-group iff in \mathcal{A} are satisfied all n-ary Malcev conditions.

Proof. Suppose that \mathcal{A} can be homomorphical embedded in an n-group \mathcal{G}. All n-ary Malcev conditions are satisfied in \mathcal{G}. Consequently, these conditions are satisfied in \mathcal{A}.

Conversely, assume that all n-ary Malcev conditions are satisfied in \mathcal{A}. By Lemma 1 it is sufficient to prove that the covering semigroup $\mathcal{S}^{\prime}(\mathcal{A}) / \rho$ is homomorphic embeddable in a binary group. \mathcal{A} being without lateral identities, [1] is a prime unit in $\mathcal{S}^{\prime}(\mathcal{A}) / \rho$. Therefore it is sufficient to prove that the semigroup $\mathcal{S}(\mathcal{A}) / \rho=\left(\mathcal{S}^{\prime}(\mathcal{A}) / \rho-\{[1]\}, \cdot\right)$ is embeddable in a group. There exists such an embedding iff in $\mathcal{S}(\mathcal{A}) / \rho$ are satisfied all binary Malcev conditions(see [3]). Since $\{[a] \mid a \in A\}$ is a generating set of $\mathcal{S}(\mathcal{A}) / \rho$ it is sufficient (see [3]) to consider only Malcev conditions according the table

L_{i}	\bar{L}_{i}	R_{i}	\bar{R}_{i}
$\left[a_{i}\right]\left[s_{i}\right]$	$\left[u_{i}\right]\left[\bar{s}_{i}\right]$	$\left[w_{i}\right]\left[\bar{a}_{i}\right]$	$\left[\bar{w}_{i}\right]\left[t_{i}\right]$
$\left[u_{i}\right]\left[s_{i}\right]$	$\left[a_{i}\right]\left[\bar{s}_{i}\right]$	$\left[w_{i}\right]\left[t_{i}\right]$	$\left[\bar{w}_{i}\right]\left[\bar{a}_{i}\right]$

Let I be a Malcev sequence and $\sigma(I)$ the corresponding system of equalities. Adjoining the closing equality to $\sigma(I)$ we obtain the system $\widetilde{\sigma}(I)$. To each equality of $\tilde{\sigma}(I)$ we assign a tag - the corresponding pair of symbols of I.

Example. Let $I=R_{1} L_{1} R_{2} L_{2} R_{3} \bar{L}_{2} \bar{R}_{3} \bar{R}_{2} \bar{L}_{1} \bar{R}_{1}$. The tagged system $\widetilde{\sigma}(I)$ is

$$
\begin{aligned}
& \left(R_{1} L_{1}\right)\left[w_{1}\right]\left[\bar{a}_{1}\right]=\left[u_{1}\right]\left[s_{1}\right] \\
& \left(L_{1} R_{2}\right)\left[a_{1}\right]\left[s_{1}\right]=\left[w_{2}\right]\left[t_{2}\right] \\
& \left(R_{2} L_{2}\right)\left[w_{2}\right]\left[\bar{a}_{2}\right]=\left[u_{2}\right]\left[s_{2}\right] \\
& \left(L_{2} R_{3}\right)\left[a_{2}\right]\left[s_{2}\right]=\left[w_{3}\right]\left[t_{3}\right] \\
& \left(R_{3} \bar{L}_{2}\right)\left[w_{3}\right]\left[\bar{a}_{3}\right]=\left[a_{2}\right]\left[\bar{s}_{2}\right] \\
& \left(\bar{L}_{2}, \bar{R}_{3}\right)\left[u_{2}\right]\left[\bar{s}_{2}\right]=\left[\bar{w}_{3}\right]\left[\bar{a}_{3}\right] \\
& \left(\bar{R}_{3}, \bar{R}_{2}\right)\left[\bar{w}_{3}\right]\left[t_{3}\right]=\left[\bar{w}_{2}\right]\left[\bar{a}_{2}\right] \\
& \left(\bar{R}_{2}, \bar{L}_{1}\right)\left[\bar{w}_{2}\right]\left[t_{2}\right]=\left[a_{1}\right]\left[\bar{s}_{1}\right] \\
& \left(\bar{L}_{1}, \bar{R}_{1}\right)\left[u_{1}\right]\left[\bar{s}_{1}\right]=\left[\bar{w}_{1}\right]\left[\bar{a}_{1}\right] \\
& \left(\bar{R}_{1}, R_{1}\right)\left[\bar{w}_{1}\right]\left[t_{1}\right]=\left[w_{1}\right]\left[t_{1}\right] \text { (the closing equality) }
\end{aligned}
$$

From the definition of the congruence relation ρ it folows:

- if $[x]=[y]$ then $\lambda(x) \equiv \lambda(y)(\bmod n-1)$, where $\lambda(x)$ is the length of x;
- in each class $[x]$ there is an element x^{\prime} with $\lambda\left(x^{\prime}\right) \leq n-1$.
Consequently, we can suppose that in the table 1 each representative has the length $\leq n-1$.

Now we construct a new system of equalities $\widetilde{\sigma}$ in wich member has the length $\equiv 1(\bmod n-1)$. Let a be an element of A.

1. If L_{1} is the first symbol of I,

$$
\left(L_{1}-\right)\left[a_{1}\right]\left[s_{1}\right]=[x][y]
$$

we choose $0 \leq j_{1} \leq n-1$ such that $\lambda\left(s_{1}\right)+j_{1} \equiv$ 0.
2. If R_{1} is the first symbol of I,

$$
\left(R_{1}-\right)\left[w_{1}\right]\left[\overline{a_{1}}\right]=[x][y]
$$

we choose $0 \leq i_{1} \leq n-1$ such that $i_{1}+\lambda\left(w_{1}\right) \equiv$ 0.

We obtain the first equality of $\widetilde{\sigma}(I)$ by multiplying the first equality of $\bar{\sigma}(I)$ on the right by $a^{j_{1}}$ in the first case and on the left by $a^{i_{1}}$ in the second case.

We obtain the second equality of $\widetilde{\sigma}(I)$ from the second equality of $\bar{\sigma}(I)$ in the following way: if the first (second) factor of the left member of the second equality of $\bar{\sigma}(I)$ is equal to the first (second) factor of the right member in the first equality of $\bar{\sigma}(I)$ then we multiply the second equality of $\bar{\sigma}(I)$ by the left by $a^{i_{1}}$ and by the right by $a^{j_{2}}$ (respectively, by the left by $a^{i_{2}}$ and by the right by $a^{j_{1}}$) where $0 \leq i_{2}, j_{2} \leq n-1$ are such that the length of the left member of new equality be $\equiv 1$.

In the same manner we obtain the $\underline{k} t h$ equality of $\widetilde{\sigma}(I)$ from the $\underline{k} t h$ equality of $\bar{\sigma}(I)$.

Example. We apply this procedure to the system $\bar{\sigma}(I)$ considered in the previous example.

Suppose $n=5, \lambda\left(u_{1}\right)=2, \lambda\left(s_{1}\right)=3, \lambda\left(\bar{s}_{1}\right)=$ $3, \lambda\left(u_{2}\right)=2, \lambda\left(s_{2}\right)=1, \lambda\left(\bar{s}_{2}\right)=1, \lambda\left(w_{1}\right)=$ $4, \lambda\left(\bar{w}_{1}\right)=4, \lambda\left(t_{1}\right)=2, \lambda\left(w_{2}\right)=2, \lambda\left(\bar{w}_{2}\right)=$ $2, \lambda\left(t_{2}\right)=2, \lambda\left(w_{3}\right)=1, \lambda\left(\bar{w}_{3}\right)=2, \lambda\left(t_{3}\right)=1$.

The tagged system $\widetilde{\sigma}(I)$ is

$$
\begin{aligned}
& \left(R_{1} L_{1}\right) w_{1} \bar{a}_{1} \equiv u_{1} s_{1} \\
& \left(L_{1} R_{2}\right) a a_{1} s_{1} \equiv a w_{2} t_{2} \\
& \left(R_{2} L_{2}\right) a w_{2} \bar{a}_{2} a \equiv a u_{2} s_{2} a \\
& \left(L_{2} R_{3}\right) a^{2} a_{2} s_{2} a \equiv a^{2} w_{3} t_{3} a \\
& \left(R_{3} \bar{L}_{2}\right) a^{2} w_{3} \bar{a}_{3} a \equiv a^{2} a_{2} \bar{s}_{2} a \\
& \left(\bar{L}_{2} \bar{R}_{3}\right) a u_{2} \bar{s}_{2} a \equiv a w_{3} a_{3} a \\
& \left(\bar{R}_{3} \bar{R}_{2}\right) a w_{3} t_{3} a \equiv a \bar{w}_{2} \bar{a}_{2} a \\
& \left(\bar{R}_{2} \bar{L}_{1}\right) a \bar{w}_{2} t_{2} \equiv a a_{1} \bar{s}_{1} \\
& \left(\bar{L}_{1} \bar{R}_{1}\right) u_{1} \bar{s}_{1} \equiv \bar{w}_{1} \bar{a}_{1} \\
& \left(\bar{R}_{1} R_{1}\right) \bar{w}_{1} t_{1} a^{3} \equiv w_{1} t_{1} a^{3}
\end{aligned}
$$

Now we prove that $\widetilde{\sigma}(I)$ is a system of equalities corresponding to same Malcev sequence I. Hence, we must show that the equalities of $\widetilde{\sigma}(I)$ are obtained according the table

Case1. L_{q} is the first symbol of I. Then $q=1$.

$$
\begin{aligned}
& \left(L_{1}-\right) a_{1} s_{1} a^{j_{1}} \equiv x_{1} y_{1} a^{j_{1}} \\
& \left(-L_{2}\right) x_{2} y_{2} a^{j_{2}} \equiv u_{2} s_{2} a^{j_{2}} \\
& \left(L_{2}-\right) a^{i_{2}} a_{2} s_{2} a^{j_{2}} \equiv a^{i_{2}} x_{3} y_{3} a^{j_{2}} \\
& \left(-\bar{L}_{2}\right) a^{i_{3}} x_{4} y_{4} a^{j_{3}} \equiv a^{i_{3}} a_{2} \bar{s}_{2} a^{j_{3}} \\
& \left(\bar{L}_{2}-\right) a^{i_{4}} u_{2} \bar{s}_{2} a^{j_{3}} \equiv a^{i_{4}} x_{5} y_{5} a^{j_{3}} \\
& \left(-\bar{L}_{1}\right) a^{i_{4}} x_{6} y_{6} a^{j_{4}} \equiv a^{i_{4}} a_{1} \bar{s}_{1} a^{j_{4}} \\
& \left(\bar{L}_{1}-\right) a^{i_{5}} u_{1} \bar{s}_{1} a^{j_{4}} \equiv a^{i_{5}} x_{7} y_{7} a^{j_{4}} \\
& \left(-L_{1}\right) a^{i_{5}} x_{8} y_{8} a^{j_{5}} \equiv a^{i_{5}} u_{1} s_{1} a^{j_{5}}
\end{aligned}
$$

We have

We have that $\lambda\left(s_{1}\right)+j_{1} \equiv 0, \lambda\left(\bar{s}_{1}\right)+j_{2} \equiv 0, i_{1}+$ $\lambda\left(u_{1}\right)+\lambda\left(\bar{s}_{1}\right)+j_{2} \equiv 1$ and $i_{1}+\lambda\left(u_{1}\right)+\lambda\left(s_{1}\right)+j_{3} \equiv 1$. Hence $i_{1}+\lambda\left(u_{1}\right) \equiv 1$ and then $\lambda\left(s_{1}\right)+j_{3} \equiv 0$ implies $j_{3}=j_{1}$ and

$$
\begin{array}{c|c}
L_{1} & \bar{L}_{1} \tag{3}\\
\hline\left(a_{1}\right)\left(s_{1} a^{j_{1}}\right) & \left(a^{i_{1}} u_{1}\right)\left(\bar{s}_{1} a^{j_{2}}\right) \\
\left(a^{i_{1}} u_{1}\right)\left(s_{1} a^{j_{1}}\right) & \left(a_{1}\right)\left(\bar{s}_{1} a^{j_{2}}\right)
\end{array}
$$

Case 2. L_{q} is not the first symbol of I. Then

$$
\begin{aligned}
& () \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& \left(-L_{q}\right) a^{i_{1}} x_{1} y_{1} a^{j_{1}} \equiv a^{i_{1}} u_{q} s_{q} a^{j_{1}} \\
& \left(\bar{L}_{q}-\right) a^{i_{2}} a_{q} s_{q} a^{j_{1}} \equiv a^{i_{2}} x_{2} y_{2} a^{j_{1}} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& \left(-\bar{L}_{q}\right) a^{i_{2}} x_{3} y_{3} a^{j_{2}} \equiv a^{i_{2}} a_{q} \bar{s}_{q} a^{j_{2}} \\
& \left(\bar{L}_{q}\right) a^{i_{3}} u_{q} \bar{s}_{q} a^{j_{2}} \equiv a^{i_{3}} x_{4} y_{4} a^{j_{2}}
\end{aligned}
$$

We have that $i_{1}+\lambda\left(u_{q}\right)+\lambda\left(s_{q}\right)+j_{1} \equiv 1, i_{2}+1=$ $i_{1}+\lambda\left(u_{q}\right), i_{2}+1+\lambda\left(\bar{s}_{q}\right)+j_{2} \equiv 1$ and $i_{3}+\lambda\left(u_{q}\right)+$ $\lambda\left(\bar{s}_{q}\right)+j_{2} \equiv 1$. Hence $i_{3}+\lambda\left(u_{q}\right)=i_{2}+1=i_{1}+$ $\lambda\left(u_{q}\right)$ and thus $i_{3}=i_{1}$, and then

$$
\begin{array}{c|c}
L_{q} & \bar{L}_{q} \tag{4}\\
\hline\left(a^{i_{2}} a_{q}\right)\left(s_{q} a^{j_{1}}\right) & \left(a^{i_{1}} u_{q}\right)\left(\bar{s}_{q} a^{j_{2}}\right) \\
\left(a^{i_{1}} u_{\sim}\right)\left(s_{q} q^{j_{1}}\right) & \left(a^{i_{2}} a_{\sim}\right)\left(\bar{s}_{\sim} a^{j_{2}}\right)
\end{array}
$$

Suppose now that this results is true for all $n(L)<d$ and $n\left(L_{q}\right)=d$. Then between L_{q} and \bar{L}_{q} there exists the symbols L_{q+1}, \ldots, L_{q+d} and $\bar{L}_{q+1}, \ldots, \bar{L}_{q+d}$. Again we have two cases.

$$
\begin{aligned}
& \lambda\left(s_{1}\right)+j_{1} \equiv 0 \\
& \lambda\left(u_{2}\right)+\lambda\left(s_{2}\right)+j_{2} \equiv 1 \\
& i_{2}+1+\lambda\left(s_{2}\right)+j_{2} \equiv 1 \\
& i_{3}+1+\lambda\left(\bar{s}_{2}\right)+j_{3} \equiv 1 \\
& i_{4}+\lambda\left(u_{2}\right)+\lambda\left(\bar{s}_{2}\right)+j_{3} \equiv 1 \\
& i_{4}+1+\lambda\left(\bar{s}_{1}\right)+j_{4} \equiv 1 \\
& i_{5}+\lambda\left(u_{1}\right)+\lambda\left(\bar{s}_{1}\right)+j_{4} \equiv 1 \\
& i_{5}+\lambda\left(u_{1}\right)+\lambda\left(s_{1}\right)+j_{5} \equiv 1
\end{aligned}
$$

Since $n\left(L_{2}\right)<d$, from

$$
\begin{array}{c|c}
L_{2} & \bar{L}_{2} \tag{5}\\
\hline\left(a^{i_{2}} a_{2}\right)\left(s_{2} a^{j_{2}}\right) & \left(a^{i_{4}} u_{2}\right)\left(\bar{s}_{2} a^{j_{3}}\right) \\
\left(u_{2}\right)\left(s_{2} a^{j_{2}}\right) & \left(a^{i_{3}} a_{q} 2\right)\left(\bar{s}_{2} a^{j_{3}}\right)
\end{array}
$$

it follows that $i_{2}=i_{3}$ and $i_{4}=0$. Now from $i_{4}+1+$ $\lambda\left(\bar{s}_{1}\right)+j_{4} \equiv 1$ it follows $\lambda\left(\bar{s}_{1}\right)+j_{4} \equiv 0$, and from $i_{5}+\lambda\left(u_{1}\right)+\lambda\left(\bar{s}_{1}\right)+j_{4} \equiv 1$ we obtain $i_{5}+\lambda\left(u_{1}\right) \equiv 1$. Now $i_{5}+\lambda\left(u_{1}\right)+\lambda\left(s_{1}\right)+j_{5} \equiv 1$ implies $\lambda\left(s_{1}\right)+j_{5} \equiv$ 0 . From the first equality we obtain $\lambda\left(s_{1}\right)+j_{1} \equiv 0$. Therefore, $j_{5}=j_{1}$ and we have

$$
\begin{array}{c|c}
L_{1} & \bar{L}_{1} \tag{6}\\
\hline\left(a_{1}\right)\left(s_{1} a^{j_{1}}\right) & \left(a^{i_{5}} u_{1}\right)\left(\bar{s}_{1} a^{j_{4}}\right) \\
\left(a^{i_{5}} u_{1}\right)\left(s_{1} a^{j_{1}}\right) & \left(a_{1}\right)\left(\bar{s}_{1} a^{j_{4}}\right)
\end{array}
$$

Case 2. L_{q} is not the first symbol of I. Then
$\left(-L_{q}\right) a^{i_{q}} x_{1} y_{1} a^{j_{q}} \equiv a^{i_{q}} u_{q} s_{q} a^{j_{q}}$
$\left(L_{q}-\right) a^{i_{q}^{\prime}} a_{q} s_{q} a^{j_{q}} \equiv a^{i_{q}^{\prime}} x_{2} y_{2} a^{j_{q}}$
$\left(-L_{q+1}\right) a^{i_{q}^{\prime}} x_{3} y_{3} a^{j_{q+1}} \equiv a^{i_{q}^{\prime}} u_{q+1} s_{q+1} a^{j_{q+1}}$
$\left(L_{q+1}-\right) a^{i_{q+1}} a_{q+1} s_{q+1} a^{j_{q+1}} \equiv a^{i_{q+1}} x_{4} y_{4} a^{j_{q+1}}$
$\left(-\bar{L}_{q+1}\right) a^{i_{q+1}^{\prime}} x_{5} y_{5} a^{j_{q+1}^{\prime}} \equiv a^{i_{q+1}^{\prime}} a_{q+1} \bar{s}_{q+1} a^{j_{q+1}^{\prime}}$
$\left(\bar{L}_{q+1}-\right) a^{i_{q+1}^{\prime \prime}} u_{q+1} \bar{s}_{q+1} a^{j_{q+1}^{\prime}} \equiv a^{i_{q+1}^{\prime \prime}} x_{6} y_{6} a^{j_{q+1}^{\prime}}$

$$
\begin{aligned}
& \left(-\bar{L}_{q}\right) a^{i_{q+1}^{\prime \prime}} x_{7} y_{7} a^{j_{q+1}^{\prime \prime}} \equiv a^{i_{q+1}^{\prime \prime}} a_{q} \bar{s}_{q} a^{j_{q+1}^{\prime \prime}} \\
& \left(\bar{L}_{q}-\right) a^{i_{q+1}^{\prime \prime}} u_{q} \bar{s}_{q} a^{j_{q+1}^{\prime \prime}} \equiv a^{i_{q+1}^{\prime \prime \prime}} x_{8} y_{8} a^{j_{q+1}^{\prime \prime}}
\end{aligned}
$$

We have

$$
\begin{aligned}
& i_{q}+\lambda\left(u_{q}\right)+\lambda\left(s_{q}\right)+j_{q} \equiv 1 \\
& i_{q}^{\prime}+1+\lambda\left(s_{q}\right)+j_{q} \equiv 1 \\
& i_{q}^{\prime}+\lambda\left(u_{q+1}\right)+\lambda\left(s_{q+1}\right)+j_{q+1} \equiv 1 \\
& i_{q+1}+1+\lambda\left(s_{q+1}\right)+j_{q+1} \equiv 1 \\
& i_{q+1}^{\prime}+1+\lambda\left(\bar{s}_{q+1}\right)+j_{q+1}^{\prime} \equiv 1 \\
& i_{q+1}^{\prime \prime}+\lambda\left(u_{q+1}\right)+\lambda\left(\bar{s}_{q+1}\right)+j_{q+1}^{\prime} \equiv 1 \\
& i_{q+1}^{\prime \prime}+1+\lambda\left(\bar{s}_{q}\right)+j_{q+1}^{\prime \prime} \equiv 1 \\
& i_{q+1}^{\prime \prime \prime}+\lambda\left(u_{q}\right)+\lambda\left(\bar{s}_{q}\right)+j_{q+1}^{\prime \prime} \equiv 1
\end{aligned}
$$

Since $n\left(L_{q+1}\right)=d-1$ from

$$
\begin{array}{c|c}
L_{q+1} & \bar{L}_{q+1} \tag{7}\\
\hline\left(a^{i_{q+1}} a_{q+1}\right)\left(s_{q+1} a^{j_{q+1}}\right) & \left(a^{i_{q+1}^{\prime \prime}} u_{q+1}\right)\left(\bar{s}_{q+1} a^{j_{q+1}^{\prime}}\right) \\
\left(a^{i_{q}^{\prime}} u_{q+1}\right)\left(s_{q+1} a^{j_{q+1}}\right) & \left(a^{i_{q+1}^{\prime}} a_{q+1}\right)\left(\bar{s}_{q+1} a^{j_{q+1}^{\prime}}\right)
\end{array}
$$

it follows that $i_{q+1}=i_{q+1}^{\prime}$ and $i_{q}^{\prime}=i_{q+1}^{\prime \prime}$.
Now from $i_{q}^{\prime}+1+\lambda\left(s_{q}\right)+j_{q} \equiv 1$ and $i_{q+1}^{\prime \prime}+1+$ $\lambda\left(\bar{s}_{q}\right)+j_{q+1}^{\prime \prime} \equiv 1$ we get $\lambda\left(s_{q}\right)+j_{q} \equiv \lambda\left(\bar{s}_{q}\right)+j_{q+1}^{\prime \prime}$.

From $i_{q+1}^{\prime \prime \prime}+\lambda\left(u_{q}\right)+\lambda\left(\bar{s}_{q}\right)+j_{q+1}^{\prime \prime} \equiv 1, i_{q+1}^{\prime \prime \prime}+$ $\lambda\left(u_{q}\right)+\lambda\left(s_{q}\right)+j_{q} \equiv 1$ and $i_{q}+\lambda\left(u_{q}\right)+\lambda\left(s_{q}\right)+j_{q} \equiv 1$ it follows that $i_{q+1}^{\prime \prime \prime}+\lambda\left(u_{q}\right) \equiv i_{q}+\lambda\left(u_{q}\right)$, therefore $i_{q} \equiv i_{q+1}^{\prime \prime \prime}$, and we have

$$
\begin{array}{c|c}
L_{q} & \bar{L}_{q} \tag{8}\\
\hline\left(a^{i_{q}^{\prime}} a_{q}\right)\left(s_{q} a^{j_{q}}\right) & \left(a^{i_{q}} u_{q}\right)\left(\bar{s}_{q} a^{j_{q+1}^{\prime \prime}}\right) \\
\left(a^{i_{q}^{\prime}} u_{q}\right)\left(s_{q} a^{j_{q}}\right) & \left(a^{i_{q}^{\prime}} a_{q}\right)\left(\bar{s}_{q} a^{j_{q+1}^{\prime \prime}}\right)
\end{array}
$$

Similar arguments for R symbols complete the proof.
Example The corresponding table 2 for $\widetilde{\sigma}(I)$ considered above is

L_{1}	\bar{L}_{1}	R_{1}	\bar{R}_{1}
$\left(a a_{1}\right) s_{1}$	$u_{1} \bar{s}_{1}$	$w_{1} \bar{a}_{1}$	$\bar{w}_{1}\left(t_{1} a^{3}\right)$
$u_{1} s_{1}$	$\left(a a_{1}\right) \bar{s}_{1}$	$w_{1}\left(t_{1} a^{3}\right)$	$\bar{w}_{1} \bar{a}_{1}$

R_{2}	\bar{R}_{2}	R_{3}	\bar{R}_{3}
$\left(a w_{2}\right)\left(\bar{a}_{2} a\right)$	$\left(a \bar{w}_{2}\right) t_{2}$	$\left(a^{2} w_{3}\right)\left(\bar{a}_{3} a\right)$	$\left(a \bar{w}_{3}\right)\left(t_{3} a\right)$
$\left(a w_{2}\right) t_{2}$	$\left(a \bar{w}_{2}\right)\left(\bar{a}_{2} a\right)$	$\left(a^{2} w_{3}\right)\left(t_{3} a\right)$	$\left(a \bar{w}_{3}\right)\left(\bar{a}_{3} a\right)$

All elements of table 2 are long products. It is easy to see that they have length n or $2 n-1$. From the definition of the congruence relation ρ it follows that if $x \equiv y(\bmod \rho)$ and $\lambda(x), \lambda(y) \equiv 1$, then $\alpha(x)=\alpha(y)$, where $\alpha(x), \alpha(y)$ are the corresponding long products.

It is easy to prove that in terms of \mathcal{A} the system $\tilde{\sigma}(I)$ is a system of equalities corresponding to the same Malcev sequence I in wich appears now n-ary symbols.

For example, let be

$$
\begin{array}{c|c}
L_{k} & \bar{L}_{k} \tag{10}\\
\hline\left(a^{i_{k}} a_{k}\right)\left(s_{k} a^{j_{k}}\right) & \left(a^{i_{k}^{\prime}} u_{k}\right)\left(\bar{s}_{k} a^{j_{k}^{\prime}}\right) \\
\left(a^{i_{k}^{\prime}} u_{k}\right)\left(s_{k} a^{j_{k}}\right) & \left(a^{i_{k}} a_{k}\right)\left(\bar{s}_{k} a^{j_{k}^{\prime}}\right)
\end{array}
$$

Case 1. Suppose

$$
\begin{aligned}
& i_{k}+1+\lambda\left(s_{k}\right)+j_{k}=n \\
& i_{k}^{\prime}+\lambda\left(u_{k}\right)+\lambda\left(s_{k}\right)+j_{k}=n
\end{aligned}
$$

Then

$$
\begin{aligned}
& \alpha\left(\left(a^{i_{k}} a_{k}\right)\left(s_{k} a^{j_{k}}\right)\right)=\alpha\left(a^{i_{k}}, a_{k}, s_{k}, a^{j_{k}}\right) \\
& \alpha\left(\left(a^{i_{k}^{\prime}} u_{k}\right)\left(s_{k} a^{j_{k}}\right)\right)=\alpha\left(a^{i_{k}^{\prime}}, u_{k}, s_{k}, a^{j_{k}}\right)
\end{aligned}
$$

Now if

$$
\begin{aligned}
& i_{k}^{\prime}+\lambda\left(u_{k}\right)+\lambda\left(\bar{s}_{k}\right)+j_{k}^{\prime}=n \\
& i_{k}+1+\lambda\left(\bar{s}_{k}\right)+j_{k}^{\prime}=n
\end{aligned}
$$

we have

$$
\begin{aligned}
& \alpha\left(\left(a^{i_{k}^{\prime}} u_{k}\right)\left(\bar{s}_{k} a^{j_{k}^{\prime}}\right)\right)=\alpha\left(a^{i_{k}^{\prime}}, u_{k}, \bar{s}_{k}, a^{j_{k}^{\prime}}\right) \\
& \alpha\left(\left(a^{i_{k}} a_{k}\right)\left(\bar{s}_{k} a^{j_{k}^{\prime}}\right)\right)=\alpha\left(a^{i_{k}}, a_{k}, \bar{s}_{k}, a^{j_{k}^{\prime}}\right)
\end{aligned}
$$

and we obtain the table

$$
\begin{array}{c|c}
L_{k}^{i_{k+1}} & \bar{L}_{k}^{i_{k+1}} \tag{11}\\
\hline \alpha\left(a^{i_{k}}, a_{k}, s_{k}, a^{j_{k}}\right) & \alpha\left(a^{i_{k}}, u_{k}, \bar{s}_{k}, a^{j_{k}^{\prime}}\right) \\
\alpha\left(a^{i_{k}^{\prime}}, u_{k}, s_{k} a^{j_{k}}\right) & \alpha\left(a^{i_{k}}, a_{k}, \bar{s}_{k}, a^{j_{k}^{\prime}}\right)
\end{array}
$$

Suppose now that

$$
\begin{aligned}
& i_{k}^{\prime}+\lambda\left(u_{k}\right)+\lambda\left(\bar{s}_{k}\right)+j_{k}^{\prime}=2 n-1 \\
& i_{k}+1+\lambda\left(\bar{s}_{k}\right)+j_{k}^{\prime}=2 n-1
\end{aligned}
$$

Then

$$
\bar{s}_{k}=\bar{s}_{k}^{\prime} \cdot \bar{s}_{k}^{\prime \prime}
$$

such that

$$
\alpha\left(\left(a^{i_{k}^{\prime}} u_{k}\right)\left(\bar{s}_{k} a^{j_{k}^{\prime}}\right)\right)=\alpha\left(a^{i_{k}^{\prime}}, u_{k}, \bar{s}_{k}^{\prime}, \alpha\left(\bar{s}_{k}^{\prime \prime}, a^{j_{k}^{\prime}}\right)\right)
$$

and

$$
\alpha\left(\left(a^{i_{k}^{\prime}} a_{k}\right)\left(\bar{s}_{k} a^{j_{k}^{\prime}}\right)=\alpha\left(a^{i_{k}^{\prime}}, a_{k}, \bar{s}_{k}^{\prime}, \alpha\left(\bar{s}_{k}^{\prime \prime}, a^{j_{k}^{\prime}}\right)\right) .\right.
$$

We obtain the table

$$
\begin{array}{c|c}
L_{k}^{i_{k+1}} & \bar{L}_{k}^{i_{k+1}} \tag{12}\\
\hline \alpha\left(a^{i_{k}}, a_{k}, s_{k}, a^{j_{k}}\right) & \alpha\left(a^{i_{k}}, u_{k}, \bar{s}_{k}^{\prime}, \alpha\left(\bar{s}_{k}^{\prime \prime}, a^{j_{k}^{\prime}}\right)\right) \\
\alpha\left(a^{i_{k}^{\prime}}, u_{k}, s_{k}, a^{j_{k}}\right) & \alpha\left(a^{i_{k}}, a_{k}, \bar{s}_{k}, \alpha\left(\bar{s}_{k}^{\prime \prime}, a^{j_{k}^{\prime}}\right)\right)
\end{array}
$$

Now we can finish this long proof.
Let I be a Malcev sequence and $\sigma(I)$ the corresponding system of equalities in $\mathcal{S}(\mathcal{A}) / \rho$ and

$$
\begin{equation*}
[x][y]=[u][v] \tag{13}
\end{equation*}
$$

the closing equality of $\sigma(I)$.
For the system $\widetilde{\sigma}(I)$ the closing equality is

$$
\begin{equation*}
\left[a^{i_{k}}\right][x][y]\left[a^{j_{k}}\right]=\left[a^{i_{k}}\right][u][v]\left[a^{j_{k}}\right] \tag{14}
\end{equation*}
$$

wich is equivalent to

$$
\begin{equation*}
\alpha\left(a^{i_{k}}, x, y, a^{j_{k}}\right)=\alpha\left(a^{i_{k}}, u, v, a^{j_{k}}\right) \tag{15}
\end{equation*}
$$

But the last equality is the closing equality for $\widetilde{\sigma}(I)$ in terms of \mathcal{A}. By hypothesis, in \mathcal{A} are satisfied all n-ary Malcev conditions. Consequently this equality holds. Hence, also (14) holds. $\mathcal{S}(\mathcal{A}) / \rho$ being a cancellation semigroup, from (14) we get (13). Therefore $\mathcal{S}(\mathcal{A}) / \rho$ is homomorphic embeddable in a group.

Malcev conditions corresponding to Malcev sequences over the subalphabet $\left\{L_{i}^{1}, \bar{L}_{i}^{1}, R_{i}^{1}, \bar{R}_{i}^{1} \mid i \in\right.$ $\mathbb{N}\}$ of the alphabet of n-ary Malcev symbols $\left\{L_{i}^{k}, \bar{L}_{i}^{k}, R_{i}^{k}, \bar{R}_{i}^{k} \mid k=1,2, \ldots, n-1 ; i \in \mathbb{N}\right\}$ are called unary Malcev conditions.

Now we shall prove the following
Theorem 3. If in an n-ary semigroup \mathcal{A} with lateral identity are satisfied all unary Malcev conditions then \mathcal{A} can be homomorphic embedded in an n-group.

Proof. Let a_{1}^{n-1} be a lateral identity. For beginning we prove that \mathcal{A} is cancellative.

Suppose that $\alpha\left(u_{1}^{n-1}, x\right)=\alpha\left(u_{1}^{n-1}, y\right)$. Then we have

$$
\begin{aligned}
\alpha\left(u_{1}^{n-1}, x\right) & =\alpha\left(u_{1}^{n-1}, \alpha\left(a_{1}^{n-1}, x\right)\right)= \\
& =\alpha\left(\alpha\left(u_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, x\right),
\end{aligned}
$$

and

$$
x=\alpha\left(a_{1}^{n-1}, x\right)=\alpha\left(\alpha\left(a_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, x\right)
$$

Then for $I=L_{1}^{1} \bar{L}_{1}^{1}$ and

L_{1}^{1}	\bar{L}_{1}^{1}
$\alpha\left(\alpha\left(u_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, x\right)$	$\alpha\left(\alpha\left(a_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, y\right)$
$\alpha\left(\alpha\left(a_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, x\right)$	$\alpha\left(\alpha\left(u_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, y\right)$

we have
$\alpha\left(\alpha\left(u_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, x\right)=\alpha\left(\alpha\left(u_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, y\right)$
implies
$\alpha\left(\alpha\left(a_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, y\right)=\alpha\left(\alpha\left(a_{1}^{n-1}, a_{1}\right), a_{2}^{n-1}, x\right)$
that is

$$
\alpha\left(u_{1}^{n-1}, x\right)=\alpha\left(u_{1}^{n-1}, y\right) \Rightarrow x=y .
$$

Hence \mathcal{A} is left cancellative.
Now from $\alpha\left(x, u_{1}^{n-1}\right)=\alpha\left(y, u_{1}^{n-1}\right)$ using $I=$ $R_{1}^{1} \bar{R}_{1}^{1}$ and the table

$$
\begin{array}{c|c}
R_{1}^{1} & \bar{R}_{1}^{1} \\
\hline \alpha\left(x, a_{1}^{n-2}, \alpha\left(a_{n-1}, u_{1}^{n-1}\right)\right) & \alpha\left(y, a_{1}^{n-2}, \alpha\left(a_{n-1}, a_{1}^{n-1}\right)\right) \tag{17}\\
\alpha\left(x, a_{1}^{n-2}, \alpha\left(a_{n-1}, a_{1}^{n-1}\right)\right) & \alpha\left(y, a_{1}^{n-2}, \alpha\left(a_{n-1}, u_{1}^{n-1}\right)\right)
\end{array}
$$

we get $x=y$, that is \mathcal{A} is right cancellative. Consequently, \mathcal{A} is a cancellative n-semigroup. We note that

$$
\begin{array}{c|c}
L_{i}^{k} & \bar{L}_{i}^{k} \tag{18}\\
\hline \alpha\left(x_{1}^{k}, u_{k+1}^{n}\right) & \alpha\left(y_{1}^{k}, v_{k+1}^{n}\right) \\
\alpha\left(y_{1}^{k}, u_{k+1}^{n}\right) & \alpha\left(x_{1}^{k}, v_{k+1}^{n}\right)
\end{array}
$$

can be rewritten as

L_{i}^{1}	\bar{L}_{i}^{1}
$\alpha\left(\alpha\left(x_{1}^{k}, a_{1}^{n-k}\right), a_{n-k+1}^{n-1}, u_{k+1}^{n}\right)$	$\alpha\left(\alpha\left(y_{1}^{k}, a_{1}^{n-k}\right), a_{n-k+1}^{n-1}, v_{k+1}^{n}\right)$
$\alpha\left(\alpha\left(y_{1}^{k}, a_{1}^{n-k}\right), a_{n-1}^{n-1}, u_{k+1}^{n}\right)$	$\alpha\left(\alpha\left(x_{1}^{k}, a_{1}^{n-k}\right), a_{n-1}^{n-1}, v_{k+1}^{n}\right)$

and

$$
\begin{array}{c|c}
R_{i}^{k} & \bar{R}_{i}^{k} \tag{20}\\
\hline \alpha\left(u_{1}^{n-k}, x_{1}^{k}\right) & \alpha\left(v_{1}^{n-k}, y_{1}^{k}\right) \\
\alpha\left(u_{1}^{n-k}, y_{1}^{k}\right) & \alpha\left(v_{1}^{n-k}, x_{1}^{k}\right)
\end{array}
$$

is equivalent to

$$
\begin{array}{c|c}
R_{i}^{k} & \bar{R}_{i}^{k} \\
\hline \alpha\left(u_{1}^{n-k}, a_{1}^{k-1}, \alpha\left(a_{k}^{n-1}, x_{1}^{k}\right)\right) & \alpha\left(v_{1}^{n-k}, a_{1}^{k-1}, \alpha\left(a_{k}^{n-1}, y_{1}^{k}\right)\right) \tag{21}\\
\alpha\left(u_{1}^{n-k}, a_{1}^{k-1}, \alpha\left(a_{k}^{n-1}, y_{1}^{k}\right)\right) & \alpha\left(v_{1}^{n-k}, a_{1}^{k-1}, \alpha\left(a_{k}^{n-1}, x_{1}^{k}\right)\right)
\end{array}
$$

In consenquence each n-ary Malcev condition can rephrased as an unary Malcev condition.

We conclude this paper with a stand alone proof for Theorem 3.

Let be $\mathcal{A}=(A, \alpha)$ an n-semigroup and a_{1}^{n-1} a sequence in A such that $\alpha\left(x, a_{1}^{n-1}\right)=x, \forall x \in A$.

Zupnik proved (see [7]) that (A, \cdot) where

$$
x \cdot y=\alpha\left(x, a_{1}^{n-2}, y\right)
$$

is a semigroup with a_{n-1} as a right unit,

$$
x \cdot a_{n-1}=x,
$$

the mapping

$$
f: A \rightarrow A
$$

defined by

$$
x f=\alpha\left(a_{n-1}, x, a_{1}^{n-2}\right)
$$

is an endomorphism of (A, \cdot) and

$$
\alpha\left(x_{1}^{n}\right)=x_{1} \cdot x_{2} f \cdot x_{3} f^{2} \cdot \ldots \cdot x_{n} f^{n-1} \cdot a
$$

where

$$
a=\alpha\left(a_{n-1}, a_{n-1}, \ldots, a_{n-1}\right) .
$$

Suppose now that \mathcal{A} is a cancellation n-semigroup. We have the following

Lemma 2. Let be \mathcal{A} a cancellative n-semigroup. The sequence a_{1}^{n-1} is a lateral identity iff there exists $a \in$ A such that $\alpha\left(a_{1}^{n-1}, a\right)=a$ or $\alpha\left(a, a_{1}^{n-1}\right)=a$.

Using Lemma 2 it is easy to prove (by induction) that

Lemma 3. In a cancellation n-semigroup any circular permutation of a lateral identity is a lateral identity too.

Suppose now that \mathcal{A} is a cancellation n-semigroup. It is easy to prove that the above endomorphism is in fact an automorphism $\left(y f^{-1}=\alpha\left(a_{1}^{n-2}, y, a_{n-1}\right)\right)$,

$$
x f^{n-1} \cdot a=a \cdot x, \forall x \in A
$$

and

$$
a f=a .
$$

Let now \mathcal{A} be an n-semigroup with a lateral identity. We assume that all unary Malcev conditions are satisfied in \mathcal{A}. Then \mathcal{A} is a cancellation n-semigroup (see the first part of the proof of Theorem 3). Since the table

$$
\begin{array}{c|c|c|c}
L_{k} & \bar{L}_{k} & R_{k} & \bar{R}_{k} \tag{22}\\
\hline x_{k} s_{k} & y_{k} \bar{s}_{k} & w_{k} s_{k} & \bar{w}_{k} y_{k} \\
y_{k} s_{k} & x_{k} \bar{s}_{k} & w_{k} y_{k} & \bar{w}_{k} x_{k}
\end{array}
$$

in is equivalent to the table

L_{k}^{1}	\bar{L}_{k}^{1}	R_{k}^{1}	\bar{R}_{k}^{1}
$\alpha\left(x_{k}, a_{2}^{n-1}, s_{k}\right)$	$\alpha\left(y_{k}, a_{2}^{n-1}, \bar{s}_{k}\right)$	$\alpha\left(w_{k}, a_{2}^{n-1}, x_{k}\right)$	$\alpha\left(\bar{w}_{k}, a_{2}^{n-1}, y_{k}\right)$
$\alpha\left(y_{k}, a_{2}^{n-1}, s_{k}\right)$	$\alpha\left(x_{k}, a_{2}^{n-1}, \bar{s}_{k}\right)$	$\alpha\left(w_{k}, a_{2}^{n-1}, y_{k}\right)$	$\alpha\left(\bar{w}_{k}, a_{2}^{n-1}, x_{k}\right)$

in \mathcal{A}, it follows that the semigroup (A, \cdot) is homomorphic embeddable in a group.

Let now $(\mu,(G, \cdot))$ be a free group over semigroup (A, \cdot) (see [3],[4]). Then μ is a monomorphism. We extends the automorphism

$$
f:(A, \cdot) \rightarrow(A, \cdot)
$$

to an automorphism

$$
\bar{f}:(G, \cdot) \rightarrow(G, \cdot)
$$

such that

$$
\mu \bar{f}=f \mu
$$

Now we have $\alpha\left(x_{1}^{n}\right) \mu \bar{f}=\alpha\left(x_{1}^{n}\right) f \mu=\left(x_{1} \cdot x_{2} f \cdot \ldots\right.$. $\left.x_{n} f^{n-1} \cdot a\right) f \mu=x_{1} f \mu \cdot x_{2} f^{2} \mu \cdot \ldots \cdot x_{n} f^{n} \mu \cdot a f \mu=$ $x_{1} \mu \bar{f} \cdot x_{2} \mu \bar{f}^{2} \cdot \ldots \cdot x_{n} \mu \bar{f}^{n} \cdot a \mu$.

Let be $\beta: G^{n} \rightarrow G$ defined by

$$
\beta\left(y_{1}^{n}\right)=y_{1} \cdot y_{2} \bar{f} \cdot \ldots \cdot y_{n} \bar{f}^{n-1} \cdot a \mu .
$$

Then

$$
\alpha\left(x_{1}^{n}\right) \mu \bar{f}=\beta\left(x_{1} \mu \bar{f}, \ldots, x_{n} \mu \bar{f}\right)
$$

Finally we prove that (G, β) is an n-group. For all $x \in A$ we have
$x \mu \bar{f}^{n-1} \cdot a \mu=x f^{n-1} \mu \cdot a \mu=\left(x f^{n-1} \cdot a\right) \mu=(a \cdot x) \mu=a \mu \cdot x \mu$,
therefore

$$
x \mu \bar{f}^{n-1}=a \mu \cdot x \mu \cdot(a \mu)^{-1}
$$

